Direkt zum Inhalt
Merck
  • Impact of Precursors Creatine, Creatinine, and Glucose on the Formation of Heterocyclic Aromatic Amines in Grilled Patties of Various Animal Species.

Impact of Precursors Creatine, Creatinine, and Glucose on the Formation of Heterocyclic Aromatic Amines in Grilled Patties of Various Animal Species.

Journal of food science (2015-10-08)
Monika Gibis, Jochen Weiss
ZUSAMMENFASSUNG

The impact of precursors such as creatine, creatinine, and glucose on the formation of mutagenic/carcinogenic heterocyclic amines (HAs) were studied in patties of 9 different animal species equally heat treated with a double-plate contact grill. All grilled patties of the various species (veal, beef, pork, lamb, horse, venison, turkey, chicken, ostrich) contained several HAs such as MeIQx (2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline; 0.5-1.4 ng/g), 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f] quinoxaline, 0 to 1.3 ng/g), PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine, 1.2 to 10.5 ng/g), harman (1-methyl-9H-pyrido[3,4-b] indole; 0.5 to 3.2 ng/g), and/or norharman (9H-pyrido[3,4-b]indole 0.5 to 1.9 ng/g). Residual glycogen (glucose) content varied greatly from 0.07 to 1.46 wt% on a dry matter (DM) basis. Total creatin(in)e content in raw meat (1.36 to 2.0 wt% DM) hardly differed between species, except in turkey and ostrich (1.1 wt% DM). Chicken contained, compared to all other species, very low concentrations of glucose (0.07 wt% DM) and the highest levels of nonprotein nitrogen compounds. The free amino acids lysine (r = 0.77, P < 0.001), tyrosine, phenylalanine, proline, isoleucine, and aspartic acid (r = 0.47-0.56, P < 0.05) showed significant correlation to PhIP in chicken. Also a linear correlation was found to exist between PhIP (r = 0.87, P < 0.001) and MeIQx (r = 0.35, P < 0.01), and the molar ratio of creatin(in)e to glucose, respectively. Harman as co-mutagens was linearly correlated to the concentration of glucose (r = 0.65, P < 0.001). By contrast, norharman was not significant correlated to glucose levels.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Ethylacetat, ACS reagent, ≥99.5%
Sigma-Aldrich
Diethylether, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Dichlormethan, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Kaliumhydroxid, ACS reagent, ≥85%, pellets
Sigma-Aldrich
Natriumhydroxid, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Natriumhydroxid, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Phosphorsäure, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Perchlorsäure, ACS reagent, 70%
Sigma-Aldrich
Natronlauge, 50% in H2O
Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Chlorwasserstoff -Lösung, 4.0 M in dioxane
Sigma-Aldrich
Dichlormethan, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
Diethylether, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Ammoniumacetat, ACS reagent, ≥97%
Sigma-Aldrich
Acetonitril, anhydrous, 99.8%
Sigma-Aldrich
Kaliumhydroxid, reagent grade, 90%, flakes
Sigma-Aldrich
Phosphorsäure, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Isopropylalkohol, meets USP testing specifications
Sigma-Aldrich
Triethylamin, ≥99.5%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Natronlauge, BioUltra, Molecular Biology, 10 M in H2O
Sigma-Aldrich
Phosphorsäure, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Ammoniak -Lösung, 7 N in methanol
Sigma-Aldrich
Ammoniumacetat, ≥99.99% trace metals basis
Sigma-Aldrich
Kalilauge, 45 wt. % in H2O