Direkt zum Inhalt
Merck
  • Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.

Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.

Carbohydrate polymers (2015-10-03)
Ahmed A Oun, Jong-Whan Rhim
ZUSAMMENFASSUNG

Cellulose nanocrystals (CNCs) were prepared by acid hydrolysis of cotton linter pulp fibers and three different purification methods, i.e., without post purification (CNC1), dialyzed against distilled water (CNC2), and neutralized with NaOH (CNC3), and their effect on film properties was evaluated by preparation of agar/CNCs composite films. All the CNCs were rod in shape with diameter of 15-50 nm and length of 210-480 nm. FTIR result indicated that there was no distinctive differences in the chemical structure between CNCs and cotton linter cellulose fiber. No significant relationship was observed between the sulfate content and crystallinity index of CNCs. The CNC3 showed higher thermal stability than the other type of CNCs due to the less adverse effect on the thermal stability of sulfate groups induced by the neutralization with NaOH. The tensile strength (TS) of agar film increased by 15% with incorporation of 5 wt% of CNC3, on the contrary, it decreased by 10% and 15% with incorporation of CNC1 and CNC2, respectively. Other performance properties of agar/CNCs composite films such as optical and water vapor barrier properties showed that the CNC3 was more effective filler than the other CNCs. In the range of concentration of CNC3 tested (1-10 wt%), inclusion of 5 wt% of CNC3 was the maximum concentration for improving or maintaining film properties of the composite films. The neutralization of acid hydrolyzed cellulose using NaOH was simple and convenient for the preparation of CNC and bionanocomposite films.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Schwefelsäure, ACS reagent, 95.0-98.0%
Sigma-Aldrich
Natriumhydroxid, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Natriumhydroxid, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Natronlauge, 50% in H2O
Sigma-Aldrich
Natronlauge, BioUltra, Molecular Biology, 10 M in H2O
Sigma-Aldrich
Natronlauge, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Schwefelsäure, 99.999%
Sigma-Aldrich
Natriumhydroxid, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Natriumhydroxid, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Schwefelsäure, puriss. p.a., for determination of Hg, ACS reagent, reag. ISO, reag. Ph. Eur., 95.0-97.0%
Sigma-Aldrich
Natriumhydroxid, reagent grade, 97%, powder
Sigma-Aldrich
Natriumhydroxid, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Natriumhydroxid, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Natronlauge, 5.0 M
Sigma-Aldrich
Natriumhydroxid, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
Natriumhydroxid, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
Natriumhydroxid, reagent grade, 97%, flakes
Sigma-Aldrich
Schwefelsäure, puriss., meets analytical specification of Ph. Eur., BP, 95-97%
Sigma-Aldrich
Schwefelsäure -Lösung, puriss. p.a., ≥25% (T)
Sigma-Aldrich
Natriumhydroxid, BioUltra, suitable for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Natronlauge, purum, ≥32%
Sigma-Aldrich
Osmium, powder, 99.9% trace metals basis
Sigma-Aldrich
Schwefelsäure, puriss., meets analytical specification of Ph. Eur., BP, 95-97%
Sigma-Aldrich
Natriumhydroxid, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥98%, pellets
Sigma-Aldrich
3-Ethyl-2,4-pentandion, Tautormermischung, 98%
Sigma-Aldrich
Natriumhydroxid-16O -Lösung, 20 wt. % in H216O, 99.9 atom % 16O