Passa al contenuto
Merck

Sodium thiosulfate attenuates acute lung injury in mice.

Anesthesiology (2014-09-27)
Masahiro Sakaguchi, Eizo Marutani, Hae-sook Shin, Wei Chen, Kenjiro Hanaoka, Ming Xian, Fumito Ichinose
ABSTRACT

Acute lung injury is characterized by neutrophilic inflammation and increased lung permeability. Thiosulfate is a stable metabolite of hydrogen sulfide, a gaseous mediator that exerts antiinflammatory effects. Although sodium thiosulfate (STS) has been used as an antidote, the effect of STS on acute lung injury is unknown. The authors assessed the effects of STS on mice lung and vascular endothelial cells subjected to acute inflammation. Lung injury was assessed in mice challenged with intratracheal lipopolysaccharide or subjected to cecal ligation and puncture with or without STS. Effects of STS on endothelial permeability and the production of inflammatory cytokines and reactive oxygen species were examined in cultured endothelial cells incubated with lipopolysaccharide or tumor necrosis factor-α. Levels of sulfide and sulfane sulfur were measured using novel fluorescence probes. STS inhibited lipopolysaccharide-induced production of cytokines (interleukin-6 [pg/ml]; 313±164, lipopolysaccharide; 79±27, lipopolysaccharide+STS [n=10]), lung permeability, histologic lung injury, and nuclear factor-κB activation in the lung. STS also prevented up-regulation of interleukin-6 in the mouse lung subjected to cecal ligation and puncture. In endothelial cells, STS increased intracellular levels of sulfide and sulfane sulfur and inhibited lipopolysaccharide or tumor necrosis factor-α-induced production of cytokines and reactive oxygen species. The beneficial effects of STS were associated with attenuation of the lipopolysaccharide-induced nuclear factor-κB activation through the inhibition of tumor necrosis factor receptor-associated factor 6 ubiquitination. STS exerts robust antiinflammatory effects in mice lung and vascular endothelium. The results suggest a therapeutic potential of STS in acute lung injury.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Perossido di idrogeno, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Perossido di idrogeno, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Sodium thiosulfate, ReagentPlus®, 99%
Sigma-Aldrich
Sodium thiosulfate pentahydrate, ACS reagent, ≥99.5%
Sigma-Aldrich
Perossido di idrogeno, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Sodium thiosulfate, purum p.a., anhydrous, ≥98.0% (RT)
Sigma-Aldrich
Perossido di idrogeno, 30% (w/w), puriss. p.a., reag. ISO, reag. Ph. Eur.
Millipore
Perossido di idrogeno, 3%, suitable for microbiology
Supelco
Perossido di idrogeno, ≥30%, for trace analysis
Sigma-Aldrich
Perossido di idrogeno, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Perossido di idrogeno, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Sigma-Aldrich
Perossido di idrogeno, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Sodium thiosulfate pentahydrate, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Sodium thiosulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Perossido di idrogeno, purum p.a., ≥35% (RT)
Sigma-Aldrich
Perossido di idrogeno, 34.5-36.5%
Sigma-Aldrich
Sodium thiosulfate pentahydrate, puriss., meets analytical specification of Ph. Eur., BP, USP
Supelco
Perossido di idrogeno, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)
Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O
Sigma-Aldrich
Acido bicinconinico, ≥98% (HPLC)
Sigma-Aldrich
Sodium thiosulfate pentahydrate, BioXtra, ≥99.5%
Sigma-Aldrich
Sodium trichloroacetate, 97%
Sigma-Aldrich
Sodium Thiosulfate Solution, 2 g/dL in deionized water
Sigma-Aldrich
Perossido di idrogeno, tested according to Ph. Eur.
Sigma-Aldrich
Sodium thiosulfate pentahydrate, 99.999% trace metals basis
Sigma-Aldrich
Anti-Ubiquitin Antibody, Lys63-Specific, clone HWA4C4, clone HWA4C4, from mouse