Saltar al contenido
Merck

Preventing leptin resistance by blocking angiotensin II AT1 receptors in diet-induced obese rats.

British journal of pharmacology (2014-09-27)
Helge Müller-Fielitz, Margot Lau, Cathleen Geißler, Lars Werner, Martina Winkler, Walter Raasch
RESUMEN

AT1 receptor blockers (ARBs) represent an approach for treating metabolic syndrome due to their potency in reducing hypertension, body weight and onset of type 2 diabetes. The mechanism underlying ARB-induced weight loss is still unclear. Leptin resistance tests (LRTs) in diet-induced obese or lean rats were conducted to determine whether telmisartan (8 mg·kg(-1) ·day(-1) , 14 days) enhances leptin sensitivity. Phosphorylation of signal transducer and activator of transcription 3 (pSTAT3) staining was performed in hypothalami to determine leptin transport across the blood-brain barrier. Telmisartin reduced weight gain, food intake and plasma leptin but blood pressure remained unchanged. The 24 h profiles of plasma leptin after saline injections were similar in controls and telmisartan-treated rats, but after leptin injections were higher in controls and slightly lower in telmisartan-treated animals. After telmisartan, energy intake during LRT was lower in leptin- than in saline-pretreated rats, but remained unchanged in controls, irrespectively of whether rats received saline or leptin. Leptin minimized the gain in body weight during LRT in telmisartan-treated rats as compared with saline-treated animals. pSTAT3 staining was reduced in cafeteria diet-fed rats as compared with chow-fed rats but this was normalized by telmisartan. Telmisartin reduced hypothalamic mRNA levels of the orexigenic peptides melanin-concentrating hormone and prepro-orexin. Rats fed a cafeteria diet develop leptin resistance after 2 weeks. Leptin sensitivity was preserved by telmisartan treatment even in rats fed a cafeteria diet. This pleiotropic effect is not related to the hypotensive action of telmisartan.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Glicerol, ACS reagent, ≥99.5%
Sigma-Aldrich
Glicerol, Molecular Biology, ≥99.0%
Sigma-Aldrich
Glicerol, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Dodecilsulfatosódico, BioReagent, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Dodecilsulfatosódico, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Dodecilsulfatosódico, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
Dodecilsulfatosódico, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Glicerol, ≥99.5%
Sigma-Aldrich
Glicerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Dodecilsulfatosódico, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Glicerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, 20% in H2O
Sigma-Aldrich
Glicerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Supelco
Glicerol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Glicerol, BioXtra, ≥99% (GC)
Supelco
Dodecilsulfatosódico, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
USP
Glicerol, United States Pharmacopeia (USP) Reference Standard
Supelco
Dodecilsulfatosódico, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Corticosterone, ≥98.5% (HPLC)
Sigma-Aldrich
Glicerol, FCC, FG
Sigma-Aldrich
Corticosterone, ≥92%
Sigma-Aldrich
Dodecilsulfatosódico, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Glicerol, meets USP testing specifications
Sigma-Aldrich
Dodecilsulfatosódico, ≥98.0% (GC)
Sigma-Aldrich
Dodecilsulfatosódico, 92.5-100.5% based on total alkyl sulfate content basis
Supelco
Glicerol, analytical standard
Sigma-Aldrich
Telmisartan, ≥98% (HPLC), solid
Sigma-Aldrich
Dodecilsulfatosódico, ≥90% ((Assay))