Skip to Content
Merck
  • Modulating notochordal differentiation of human induced pluripotent stem cells using natural nucleus pulposus tissue matrix.

Modulating notochordal differentiation of human induced pluripotent stem cells using natural nucleus pulposus tissue matrix.

PloS one (2014-07-24)
Yongxing Liu, Mohamed N Rahaman, B Sonny Bal
ABSTRACT

Human induced pluripotent stem cells (hiPSCs) can differentiate into notochordal cell (NC)-like cells when cultured in the presence of natural porcine nucleus pulposus (NP) tissue matrix. The method promises massive production of high-quality, functional cells to treat degenerative intervertebral discs (IVDs). Based on our previous work, we further examined the effect of cell-NP matrix contact and culture medium on the differentiation, and further assessed the functional differentiation ability of the generated NC-like. The study showed that direct contact between hiPSCs and NP matrix can promote the differentiation yield, whilst both the contact and non-contact cultures can generate functional NC-like cells. The generated NC-like cells are highly homogenous regarding the expression of notochordal marker genes. A culture medium containing a cocktail of growth factors (FGF, EGF, VEGF and IGF-1) also supported the notochordal differentiation in the presence of NP matrix. The NC-like cells showed excellent functional differentiation ability to generate NP-like tissue which was rich in aggrecan and collagen type II; and particularly, the proteoglycan to collagen content ratio was as high as 12.5-17.5 which represents a phenotype close to NP rather than hyaline cartilage. Collectively, the present study confirmed the effectiveness and flexibility of using natural NP tissue matrix to direct notochordal differentiation of hiPSCs, and the potential of using the generated NC-like cells for treating IVD degeneration.

MATERIALS
Product Number
Brand
Product Description

Supelco
Perchloric acid, 0.01 M HClO4 in water (0.01N), eluent for IC
Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Perchloric acid, 70%, 99.999% trace metals basis
Sigma-Aldrich
L-Cysteine, 97%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
L-Cysteine, from non-animal source, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%, poly coated bottles
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Supelco
Dexamethasone, VETRANAL®, analytical standard
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
L-Cysteine, ≥97%, FG
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
L-Cysteine, BioUltra, ≥98.5% (RT)
Millipore
Kovac′s reagent for indoles, suitable for microbiology
Millipore
Kovac′s reagent for indoles, suitable for microbiology