Passa al contenuto
Merck

Morphine glucuronidation increases its analgesic effect in guinea pigs.

Life sciences (2014-06-27)
Ana Oliveira, Dora Pinho, António Albino-Teixeira, Rui Medeiros, Ricardo Jorge Dinis-Oliveira, Félix Carvalho
ABSTRACT

Morphine is extensively metabolized to neurotoxic morphine-3-glucuronide (M3G) and opioid agonist morphine-6-glucuronide (M6G). Due to these different roles, interindividual variability and co-administration of drugs that interfere with metabolism may affect analgesia. The aim of the study was to investigate the repercussions of administration of an inducer (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) and an inhibitor (ranitidine) of glucuronidation in morphine metabolism and consequent analgesia, using the Guinea pig as a suitable model. Thirty male Dunkin-Hartley guinea pigs were divided in six groups: control, morphine, ranitidine, ranitidine+morphine, TCDD and TCDD+morphine. After previous exposure to TCDD and ranitidine, morphine effect was assessed by an increasing temperature hotplate (35-52.5°C), during 60min after morphine administration. Then, blood was collected and plasma morphine and metabolites were quantified. Animals treated with TCDD presented faster analgesic effect and 75% reached the cut-off temperature of 52.5°C, comparing with only 25% in morphine group. Animals treated with ranitidine presented a significantly lower analgesic effect, compared with morphine group (p<0.05). Moreover, significant differences between groups were found in M3G levels and M3G/morphine ratio (p<0.001 and p<0.0001), with TCDD animals presenting the highest values for M3G, M6G, M3G/morphine and M6G/morphine, and the lowest value for morphine. The opposite was observed in the animals treated with ranitidine. Our results indicate that modulation of morphine metabolism may result in variations in metabolite concentrations, leading to different analgesic responses to morphine, in an animal model that may be used to improve morphine effect in clinical practice.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acido fosforico, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Sodio dodecil solfato, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acido fosforico, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Trietilammina, ≥99.5%
Sigma-Aldrich
Acido fosforico, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Sodio dodecil solfato, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Sodio dodecil solfato, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodio dodecil solfato, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Sodium phosphate monobasic, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Trietilammina, ≥99%
Sigma-Aldrich
Sodio dodecil solfato, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Trietilammina, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Trietilammina, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Sodium phosphate monobasic, BioReagent, Molecular Biology, anhydrous, ≥98%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Sodio dodecil solfato, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Acido fosforico, crystalline, ≥99.999% trace metals basis
Sigma-Aldrich
Sodio dodecil solfato, BioUltra, 20% in H2O
Sigma-Aldrich
Metanolo, Absolute - Acetone free