Passa al contenuto
Merck
  • Comprehensive comparison of cultivable norovirus surrogates in response to different inactivation and disinfection treatments.

Comprehensive comparison of cultivable norovirus surrogates in response to different inactivation and disinfection treatments.

Applied and environmental microbiology (2014-07-13)
Theresa Cromeans, Geun Woo Park, Veronica Costantini, David Lee, Qiuhong Wang, Tibor Farkas, Alvin Lee, Jan Vinjé
ABSTRACT

Human norovirus is the leading cause of epidemic and sporadic acute gastroenteritis. Since no cell culture method for human norovirus exists, cultivable surrogate viruses (CSV), including feline calicivirus (FCV), murine norovirus (MNV), porcine enteric calicivirus (PEC), and Tulane virus (TuV), have been used to study responses to inactivation and disinfection methods. We compared the levels of reduction in infectivities of CSV and Aichi virus (AiV) after exposure to extreme pHs, 56°C heating, alcohols, chlorine on surfaces, and high hydrostatic pressure (HHP), using the same matrix and identical test parameters for all viruses, as well as the reduction of human norovirus RNA levels under these conditions. At pH 2, FCV was inactivated by 6 log10 units, whereas MNV, TuV, and AiV were resistant. All CSV were completely inactivated at 56°C within 20 min. MNV was inactivated 5 log10 units by alcohols, in contrast to 2 and 3 log10 units for FCV and PEC, respectively. TuV and AiV were relatively insensitive to alcohols. FCV was reduced 5 log10 units by 1,000 ppm chlorine, in contrast to 1 log10 unit for the other CSV. All CSV except FCV, when dried on stainless steel surfaces, were insensitive to 200 ppm chlorine. HHP completely inactivated FCV, MNV, and PEC at ≥300 MPa, and TuV at 600 MPa, while AiV was completely resistant to HHP up to 800 MPa. By reverse transcription-quantitative PCR (RT-qPCR), genogroup I (GI) noroviruses were more sensitive than GII noroviruses to alcohols, chlorine, and HHP. Although inactivation profiles were variable for each treatment, TuV and MNV were the most resistant CSV overall and therefore are the best candidates for studying the public health outcomes of norovirus infections.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
2-Propanolo, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanolo, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanolo, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
2-Propanolo, meets USP testing specifications
Sigma-Aldrich
2-Propanolo, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanolo, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
2-Propanolo, ≥99.7%, FCC, FG
Sigma-Aldrich
2-Propanolo, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
2-Propanolo, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
L-lisina, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Supelco
2-Propanolo, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
2-Propanolo, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
3-Amino-9-ethylcarbazole, tablet
Supelco
2-Propanolo, analytical standard
Sigma-Aldrich
Glicochenodesossicolato di sodio
Sigma-Aldrich
L-lisina, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
2-Propanolo, suitable for HPLC, 99.5%
USP
2-Propanolo, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
3-Amino-9-ethylcarbazole, ≥95% (HPLC), powder
Supelco
L-lisina, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-lisina, BioUltra, ≥99.5% (AT)
L-lisina, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Glicochenodesossicolato di sodio, ≥97.0% (TLC)
Supelco
L-Lysine hydrochloride solution, 100 mM amino acid in 0.1 M HCl, analytical standard
Supelco
L-lisina, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland