Passa al contenuto
Merck
  • Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes.

Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes.

International journal of pharmaceutics (2015-01-13)
Shashi Ravi Suman Rudrangi, Ruchir Bhomia, Vivek Trivedi, George J Vine, John C Mitchell, Bruce David Alexander, Stephen Richard Wicks
ABSTRACT

The main objective of this study was to investigate different manufacturing processes claimed to promote inclusion complexation between indomethacin and cyclodextrins in order to enhance the apparent solubility and dissolution properties of indomethacin. Especially, the effectiveness of supercritical carbon dioxide processing for preparing solid drug-cyclodextrin inclusion complexes was investigated and compared to other preparation methods. The complexes were prepared by physical mixing, co-evaporation, freeze drying from aqueous solution, spray drying and supercritical carbon dioxide processing methods. The prepared complexes were then evaluated by scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, solubility and dissolution studies. The method of preparation of the inclusion complexes was shown to influence the physicochemical properties of the formed complexes. Indomethacin exists in a highly crystalline solid form. Physical mixing of indomethacin and methyl-β-cyclodextrin appeared not to reduce the degree of crystallinity of the drug. The co-evaporated and freeze dried complexes had a lower degree of crystallinity than the physical mix; however the lowest degree of crystallinity was achieved in complexes prepared by spray drying and supercritical carbon dioxide processing methods. All systems based on methyl-β-cyclodextrin exhibited better dissolution properties than the drug alone. The greatest improvement in drug dissolution properties was obtained from complexes prepared using supercritical carbon dioxide processing, thereafter by spray drying, freeze drying, co-evaporation and finally by physical mixing. Supercritical carbon dioxide processing is well known as an energy efficient alternative to other pharmaceutical processes and may have application for the preparation of solid-state drug-cyclodextrin inclusion complexes. It is an effective and economic method that allows the formation of solid complexes with a high yield, without the use of organic solvents and problems associated with their residues.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acido cloridrico, ACS reagent, 37%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Acido cloridrico, ACS reagent, 37%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Cloruro di idrogeno, 4.0 M in dioxane
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Sigma-Aldrich
Acido cloridrico, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Acido cloridrico, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Cloruro di idrogeno, 2.0 M in diethyl ether
Sigma-Aldrich
Acido cloridrico, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
Etanolo, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Supelco
Acido cloridrico, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Indomethacin, 98.0-102.0%, meets EP testing specifications
Supelco
Etanolo, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Cloruro di idrogeno, 1.0 M in diethyl ether
Supelco
Etanolo, standard for GC
Sigma-Aldrich
Etanolo, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Acido cloridrico, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Cloruro di idrogeno, 3 M in cyclopentyl methyl ether (CPME)
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
Acido cloridrico, 32 wt. % in H2O, FCC
Sigma-Aldrich
Etanolo, purum, fine spirit, denaturated with 2% 2-butanone, F25 MEK1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Etanolo
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Etanolo, tested according to Ph. Eur.
Sigma-Aldrich
Cloruro di idrogeno, 1.0 M in acetic acid
Supelco
Hydrogen chloride – ethanol, ~1.25 M HCl, derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
Etanolo, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Indomethacin, meets USP testing specifications
Sigma-Aldrich
Etanolo, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)