Passa al contenuto
Merck
  • Photocatalytic degradation of carbamazepine in wastewater by using a new class of whey-stabilized nanocrystalline TiO2 and ZnO.

Photocatalytic degradation of carbamazepine in wastewater by using a new class of whey-stabilized nanocrystalline TiO2 and ZnO.

The Science of the total environment (2014-04-15)
D P Mohapatra, S K Brar, R Daghrir, R D Tyagi, P Picard, R Y Surampalli, P Drogui
ABSTRACT

Nanoscale photocatalysts have attracted much attention due to their high surface area to volume ratios. However, due to extremely high reactivity, TiO2 and ZnO nanoparticles prepared using different methods tend to either react with surrounding media or agglomerate, resulting in the formation of much larger flocs and significant loss in reactivity. This work investigates the photocatalytic degradation of carbamazepine (CBZ), a persistent pharmaceutical compound from wastewater (WW) using TiO2 and ZnO nanoparticles prepared in the presence of a water-soluble whey powder as stabilizer. The TiO2 and ZnO nanoparticles prepared in the presence of whey stabilizer displayed much less agglomeration and greater degradation power than those prepared without a stabilizer. Higher photocatalytic degradation of carbamazepine was observed (100%) by using whey stabilized TiO2 nanoparticles with 55 min irradiation time as compared to ZnO nanoparticles (92%). The higher degradation of CBZ in wastewater by using TiO2 nanoparticles as compared to ZnO nanoparticles was due to formation of higher photo-generated holes with high oxidizing power of TiO2. The photocatalytic capacity of ZnO anticipated as similar to that of TiO2 as it has the same band gap energy (3.2 eV) as TiO2. However, in the case of ZnO, photocorrosion frequently occurs with the illumination of UV light and this phenomenon is considered as one of the main reasons for the decrease of ZnO photocatalytic activity in aqueous solutions. Further, the estrogenic activity of photocatalyzed WW sample with CBZ and its by-products was carried out by yeast estrogen screen (YES) assay method. Based upon the YES test results, none of the samples showed estrogenic activity.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Etilacetato, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Etilacetato, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Etilacetato, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Etanolo, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Etilacetato, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanolo, Absolute - Acetone free
Supelco
Acetone, analytical standard
USP
Metanolo, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Metanolo, BioReagent, ≥99.93%
Supelco
Etanolo, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Metanolo, analytical standard