• Home
  • Search Results
  • Zinc-Chelating Mechanism of Sea Cucumber (Stichopus japonicus)-Derived Synthetic Peptides.

Zinc-Chelating Mechanism of Sea Cucumber (Stichopus japonicus)-Derived Synthetic Peptides.

Marine drugs (2019-07-28)
Xiaoyang Liu, Zixu Wang, Fawen Yin, Yuxin Liu, Ningbo Qin, Yoshimasa Nakamura, Fereidoon Shahidi, Chenxu Yu, Dayong Zhou, Beiwei Zhu

In this study, three synthetic zinc-chelating peptides (ZCPs) derived from sea cucumber hydrolysates with limited or none of the common metal-chelating amino-acid residues were analyzed by flame atomic absorption spectroscopy, circular dichroism spectroscopy, size exclusion chromatography, zeta-potential, Fourier transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy. The amount of zinc bound to the ZCPs reached maximum values with ZCP:zinc at 1:1, and it was not further increased by additional zinc presence. The secondary structures of ZCPs were slightly altered, whereas no formation of multimers was observed. Furthermore, zinc increased the zeta-potential value by neutralizing the negatively charged residues. Only free carboxyl in C-terminus of ZCPs was identified as the primary binding site of zinc. These results provide the theoretical foundation to understand the mechanism of zinc chelation by peptides.

Product Number
Product Description

4-(2-Pyridylazo)resorcinol, 96%

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.