• Home
  • Search Results
  • A simvastatin-releasing scaffold with periodontal ligament stem cell sheets for periodontal regeneration.

A simvastatin-releasing scaffold with periodontal ligament stem cell sheets for periodontal regeneration.

Journal of applied biomaterials & functional materials (2020-09-16)
Bingjiao Zhao, Jing Chen, Liru Zhao, Jiajia Deng, Qiang Li
ABSTRACT

Simvastatin (SIM) has been documented to induce the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). To establish an efficient release system for periodontal regeneration, a polycaprolactone (PCL) membrane scaffold containing SIM was electrospun and evaluated. The obtained PCL-SIM membrane scaffold showed sustained release up to 28 days, without deleterious effect on proliferation of PDLSCs on the scaffolds. PDLSCs were seeded onto scaffolds and their osteogenic differentiation was evaluated. After 21 days, expressions of collagen type I, alkaline phosphatase and bone sialoprotein genes were significantly upregulated and mineralized matrix formation was increased on the PCL-SIM scaffolds compared with the PCL scaffolds. In a heterotopic periodontal regeneration model, a cell sheet-scaffold construct was assembled by placement of multilayers of PDLSC sheets on PCL or PCL-SIM scaffolds, and these were then placed between dentin and ceramic bovine bone for subcutaneous implantation in athymic mice. After 8 weeks, the PCL-SIM membrane showed formation of significantly more ectopic cementum-like mineral on the dentin surface. These findings demonstrated that the PCL-SIM membrane scaffold promotes cementum-like tissue formation by sustained drug release, suggesting the feasibility of its therapeutic use with PDLSC sheets to improve periodontal regeneration.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Simvastatin - CAS 79902-63-9 - Calbiochem, A lipophilic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor that blocks Ras function through inhibition of farnesylation.