Anomalous fracture in two-dimensional rhenium disulfide.

Science advances (2020-11-20)
Lingli Huang, Fangyuan Zheng, Qingming Deng, Quoc Huy Thi, Lok Wing Wong, Yuan Cai, Ning Wang, Chun-Sing Lee, Shu Ping Lau, Thuc Hue Ly, Jiong Zhao
ABSTRACT

Low-dimensional materials usually exhibit mechanical properties from those of their bulk counterparts. Here, we show in two-dimensional (2D) rhenium disulfide (ReS2) that the fracture processes are dominated by a variety of previously unidentified phenomena, which are not present in bulk materials. Through direct transmission electron microscopy observations at the atomic scale, the structures close to the brittle crack tip zones are clearly revealed. Notably, the lattice reconstructions initiated at the postcrack edges can impose additional strain on the crack tips, modifying the fracture toughness of this material. Moreover, the monatomic thickness allows the restacking of postcrack edges in the shear strain-dominated cracks, which is potentially useful for the rational design of 2D stacking contacts in atomic width. Our studies provide critical insights into the atomistic processes of fracture and unveil the origin of the brittleness in the 2D materials.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sulfur, 99.998% trace metals basis
Sigma-Aldrich
Ammonium perrhenate, 99.999% trace metals basis