• Home
  • Search Results
  • Phytochemicals to suppress Fusarium head blight in wheat-chickpea rotation.

Phytochemicals to suppress Fusarium head blight in wheat-chickpea rotation.

Phytochemistry (2012-04-24)
Andre F Cruz, Chantal Hamel, Chao Yang, Tomoko Matsubara, Yantai Gan, Asheesh K Singh, Kousaku Kuwada, Takaaki Ishii
ABSTRACT

Fusarium diseases cause major economic losses in wheat-based crop rotations. Volatile organic compounds (VOC) in wheat and rotation crops, such as chickpea, may negatively impact pathogenic Fusarium. Using the headspace GC-MS method, 16 VOC were found in greenhouse-grown wheat leaves: dimethylamine, 2-methyl-1-propanol, octanoic acid-ethyl ester, acetic acid, 2-ethyl-1-hexanol, nonanoic acid-ethyl ester, nonanol, N-ethyl-benzenamine, naphthalene, butylated hydroxytoluene, dimethoxy methane, phenol, 3-methyl-phenol, 3,4-dimethoxy-phenol, 2,4-bis (1,1-dimethyethyl)-phenol, and 1,4,7,10,13,16-hexaoxacyclooctadecane; and 10 VOC in field-grown chickpea leaves: ethanol, 1-penten-3-ol, 1-hexanol, cis-3-hexen-1-ol, trans-2-hexen-1-ol, trans-2-hexenal, 3-methyl-1-butanol, 3-hydroxy-2-butanone, 3-methyl-benzaldehyde and naphthalene. Also found was 1-penten-3-ol in chickpea roots and in the root nodules of two of the three cultivars tested. Chickpea VOC production pattern was related (P=0.023) to Ascochyta blight severity, suggesting that 1-penten-3-ol and cis-3-hexen-1-ol were induced by Ascochyta rabiei. Bioassays conducted in Petri plates established that chickpea-produced VOC used in isolation were generally more potent against Fusarium graminearum and Fusarium avenaceum than wheat-produced VOC, except for 2-ethyl-1-hexanol, which was rare in wheat and toxic to both Fusarium and tetraploid wheat. Whereas exposure to 1-penten-3-ol and 2-methyl-1-propanol could suppress radial growth by over 50% and octanoic acid-ethyl ester, nonanol, and nonanoic acid-ethyl ester had only weak effects, F. graminearum and F. avenaceum growth was completely inhibited by exposure to trans-2-hexenal, trans-2-hexen-1-ol, cis-3-hexen-1-ol, and 1-hexanol. Among these VOC, trans-2-hexenal and 1-hexanol protected wheat seedlings against F. avenaceum and F. graminearum, respectively, in a controlled condition experiment. Genetic variation in the production of 2-ethyl-1-hexanol, a potent VOC produced in low amount by wheat, suggests the possibility of selecting Fusarium resistance in wheat on the basis of leaf VOC concentration. Results also suggests that the level of Fusarium inoculum in chickpea-wheat rotation systems may be reduced by growing chickpea genotypes with high root and shoot levels of trans-2-hexen-1-ol and 1-hexanol.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
cis-3-Hexen-1-ol, ≥98%, FCC, FG
Sigma-Aldrich
cis-3-Hexen-1-ol, natural, >98%, FCC, FG
Sigma-Aldrich
cis-3-Hexen-1-ol, 98%
Sigma-Aldrich
trans-3-Hexen-1-ol, 97%
Sigma-Aldrich
trans-3-Hexen-1-ol, ≥95%, stabilized
Supelco
cis-3-Hexen-1-ol, analytical standard

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.