• Home
  • Search Results
  • Fast electrophoretic separation optimization using gradient micro free-flow electrophoresis.

Fast electrophoretic separation optimization using gradient micro free-flow electrophoresis.

Analytical chemistry (2008-03-21)
Bryan R Fonslow, Michael T Bowser
ABSTRACT

The continuous nature of micro free-flow electrophoresis (mu-FFE) was used to monitor the effect of a gradient of buffer conditions on the separation. This unique application has great potential for fast optimization of separation conditions and estimation of equilibrium constants. COMSOL was used to model pressure profiles in the development of a new mu-FFE design that allowed even application of a buffer gradient across the separation channel. The new design was fabricated in an all glass device using our previously published multiple-depth etch method (Fonslow, B. R.; Barocas, V. H.; Bowser, M. T. Anal. Chem. 2006, 78, 5369-5374, ref 1). Fluorescein solutions were used to characterize the applied gradients in the separation channel. Linear gradients were observed when buffer conditions were varied over a period of 5-10 min. The effect of a gradient of 0-50 mM hydroxypropyl-beta-cyclodextrin (HP-beta-CD) on the separation of a group of 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) labeled primary amines was monitored as a proof of concept experiment. Direct comparisons to capillary electrophoresis (CE) separations performed under the same conditions were made. Gradient mu-FFE recorded 60 separations during a 5 min gradient allowing nearly complete coverage across a range of HP-beta-CD concentrations. In comparison, 4 h were required to assess 15 sets of conditions across the same range of HP-beta-CD concentrations using CE. Qualitatively, mu-FFE separations were predictive of the migration order and spacing of peaks in CE electropherograms measured under the same conditions. Data were fit to equations describing 1:1 analyte-additive binding to allow a more quantitative comparison between gradient mu-FFE and CE.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
4-Fluoro-7-nitrobenzofurazan, ≥98% (elemental analysis)
Sigma-Aldrich
4-Fluoro-7-nitrobenzofurazan, BioReagent, suitable for fluorescence, ≥98.0% (HPLC)

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.