• Home
  • Search Results
  • Depletion of abundant plasma proteins by poly(N-isopropylacrylamide-acrylic acid) hydrogel particles.

Depletion of abundant plasma proteins by poly(N-isopropylacrylamide-acrylic acid) hydrogel particles.

Analytical chemistry (2014-01-17)
Gerard Such-Sanmartín, Estela Ventura-Espejo, Ole N Jensen
ABSTRACT

Protein and proteome analysis of human blood plasma presents a challenge to current analytical platforms such as mass spectrometry (MS). High abundance plasma proteins interfere with detection of potential protein biomarkers that are often 3-10 orders of magnitude lower in concentration. We report the application of pH-sensitive poly(N-isopropylacrylamide-acrylic acid) hydrogel particles for removal of abundant plasma proteins, prior to proteome analysis by MS. Protein depletion occurs by two separate mechanisms: (1) hydrogel particles incubated with low concentrations of plasma capture abundant proteins at higher efficiency than low abundance proteins, which are enriched in the supernatants, whereas (2) hydrogel particles incubated with high concentrations of plasma capture and irreversibly trap abundant proteins. During the elution step, irreversibly trapped proteins remain captured while low abundance proteins are released and recovered in the eluate. We developed a series of distinct depletion protocols that proved useful for sample depletion and fractionation and facilitated targeted analysis of putative biomarkers such as IGF1-2, IBP2-7, ALS, KLK6-7, ISK5, and PLF4 by selected reaction monitoring (SRM) liquid chromatography (LC)-MS/MS. This novel use of hydrogel particles opens new perspectives for biomarker analysis based on mass spectrometry.

MATERIALS
Product Number
Brand
Product Description

Millipore
Seppro® Dilution buffer

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.