• Home
  • Search Results
  • Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium.

Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium.

Biomaterials (2005-12-13)
Michiko Sato, Marisa A Sambito, Arash Aslani, Nader M Kalkhoran, Elliott B Slamovich, Thomas Jay Webster

In order to improve orthopedic implant performance, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (HA) powders to coat titanium. HA was synthesized through a wet chemical process. The precipitated powders were either sintered at 1100 degrees C for 1h in order to produce UltraCap HA (or microcrystalline size HA) or were treated hydrothermally at 200 degrees C for 20 h to produce nanocrystalline HA. Some of the UltraCap and nanocrystalline HA powders were doped with yttrium (Y) since previous studies demonstrated that Y-doped HA in bulk improved osteoblast (or bone-forming cell) function over undoped HA. The original HA particles were characterized using X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), BET, a laser particle size analyzer, and scanning electron microscopy (SEM). These powders were then deposited onto titanium by a novel room-temperature process, called IonTite. The properties of the resulting HA-coatings on titanium were compared to respective properties of the original HA powders. The results showed that the chemical and physical properties of the original HA powders were retained when coated on titanium by IonTite, as determined by XRD, SEM, and atomic force microscopy (AFM) analysis. More importantly, results showed increased osteoblast adhesion on the nanocrystalline HA IonTite coatings compared to traditionally used plasma-sprayed HA coatings. Results also demonstrated greater amounts of calcium deposition by osteoblasts cultured on Y-doped nanocrystalline HA coatings compared to either UltraCap IonTite coatings or plasma-sprayed HA coatings. These results encourage further studies on nanocrystalline IonTite HA coatings on titanium for improved orthopedic applications.

Product Number
Product Description

Hydroxyapatite, nanopowder, <200 nm particle size (BET), ≥97%, synthetic

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.