Direkt zum Inhalt
Merck
  • Analysis of triterpenoids and phytosterols in vegetables by thin-layer chromatography coupled to tandem mass spectrometry.

Analysis of triterpenoids and phytosterols in vegetables by thin-layer chromatography coupled to tandem mass spectrometry.

Journal of chromatography. A (2015-01-20)
Katerina Naumoska, Irena Vovk
ZUSAMMENFASSUNG

Three TLC methods were used for an initial screening of some common plant triterpenoids and phytosterols in cuticular wax extracts of different vegetables (zucchini, eggplant, tomato, red pepper, mangold, spinach, lettuce, white-colored radicchio di Castelfranco, raddichio Leonardo, white cabbage, red cabbage and savoy cabbage). The preliminary experiments showed that the studied vegetables are potential sources of triterpenoids and phytosterols. To identify the compounds present in the extracts with high certainty, the first TLC-MS(2) method was developed for the analysis of eight triterpenoids (lupeol, α-amyrin, β-amyrin, cycloartenol, cycloartenol acetate, lupeol acetate, lupenone and friedelin) and two phytosterols (β-sitosterol and stigmasterol). This method takes the advantages of: (1) a satisfactory separation of the target compounds; (2) their differentiation according to the band colors; and (3) the potential of their discrimination by the acquired first-order mass (MS) and product ion (MS(2)) spectra. Since the closely eluting compounds have complex and similar MS(2) spectra, distinguishing between them was possible by the proposed characteristic ions. Using a custom-built mass spectral library, the head to tail MS(2) spectra comparison of sample test solution zones and standard aided the compound identification. In addition to the molecular mass information, the developed atmospheric pressure chemical ionization method (APCI) in positive ion mode provided structural information, regarding the presence of functional group in the molecule. This approach resulted in many positively assigned compounds in the investigated vegetable waxes, from which more than a half are reported for the first time.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Aceton, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Dichlormethan, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Schwefelsäure, ACS reagent, 95.0-98.0%
Sigma-Aldrich
Essigsäure, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Ethylacetat, ACS reagent, ≥99.5%
Sigma-Aldrich
Aceton, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ethylacetat, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dichlormethan, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
Essigsäure, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Natriumsulfat, ACS reagent, ≥99.0%, anhydrous, granular
Sigma-Aldrich
Aceton, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Dichlormethan, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
Natriumsulfat, ACS reagent, ≥99.0%, anhydrous, powder
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Salzsäure, ACS reagent, 37%
Sigma-Aldrich
Ethylacetat, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Chlorwasserstoff -Lösung, 4.0 M in dioxane
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Hexan, ReagentPlus®, ≥99%
Sigma-Aldrich
Dichlormethan, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Hexan, suitable for HPLC, ≥95%