Passa al contenuto
Merck
  • Enantioseparation of pyroglutamide derivatives on polysaccharide based chiral stationary phases by high-performance liquid chromatography and supercritical fluid chromatography: a comparative study.

Enantioseparation of pyroglutamide derivatives on polysaccharide based chiral stationary phases by high-performance liquid chromatography and supercritical fluid chromatography: a comparative study.

Journal of chromatography. A (2014-07-21)
Davy Baudelet, Nadège Schifano-Faux, Alina Ghinet, Xavier Dezitter, Florent Barbotin, Philippe Gautret, Benoit Rigo, Philippe Chavatte, Régis Millet, Christophe Furman, Claude Vaccher, Emmanuelle Lipka
ABSTRACT

Analytical enantioseparation of three pyroglutamide derivatives with pharmacological activity against the purinergic receptor P2X7, was run in both high-performance liquid chromatography and supercritical fluid chromatography. Four polysaccharide based chiral stationary phases, namely amylose and cellulose tris (3,5-dimethylphenylcarbamate), amylose tris ((S)-α-methylbenzylcarbamate) and cellulose tris (4-methylbenzoate) with various mobile phases consisted of either heptane/alcohol (ethanol and 2-propanol) or carbon dioxide/alcohol (methanol or ethanol) mixtures, were investigated. After analytical screenings, the best conditions were transposed, for compound 1, to semi-preparative scale. Each approach was fully validated to meet the International Conference on Harmonisation requirements and compared. Whereas the limits of detection and quantification were near six-fold better in HPLC than in SFC (respectively 0.20 and 0.66 μM versus 1.11 and 3.53 μM for one of the enantiomers), in terms of low solvent consumption (7.2 mL of EtOH versus 3.2 mL of EtOH plus 28.8 mL of toxic and inflammable heptane per injection in SFC and HPLC, respectively), time effective cost (9 min versus 40 min per injection in SFC and HPLC, respectively) and yields (98% versus 71% in SFC and HPLC, respectively), the latter method proved its ecological superiority.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
2-Propanolo, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanolo, ACS reagent, ≥99.5%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Eptano, suitable for HPLC, ≥99%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Eptano, ReagentPlus®, 99%
Sigma-Aldrich
2-Propanolo, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
2-Propanolo, meets USP testing specifications
Sigma-Aldrich
2-Propanolo, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
2-Propanolo, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Eptano, HPLC Plus, for HPLC, GC, and residue analysis, 99%
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Etanolo, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
2-Propanolo, ≥99.7%, FCC, FG
Sigma-Aldrich
2-Propanolo, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
Metanolo, Absolute - Acetone free
Sigma-Aldrich
2-Propanolo, BioUltra, Molecular Biology, ≥99.5% (GC)
USP
Metanolo, United States Pharmacopeia (USP) Reference Standard