Passa al contenuto
Merck
  • Using mass spectrometry to detect, differentiate, and semiquantitate closely related peptide hormones in complex milieu: measurement of IGF-II and vesiculin.

Using mass spectrometry to detect, differentiate, and semiquantitate closely related peptide hormones in complex milieu: measurement of IGF-II and vesiculin.

Endocrinology (2014-12-30)
Kate L Lee, Martin J Middleditch, Geoffrey M Williams, Margaret A Brimble, Garth J S Cooper
ABSTRACT

The search for an islet β-cell growth factor has been a key objective in recent diabetes research, because the ability to regenerate and/or protect the functioning β-cell population in patients could result in a great advancement for diabetes treatment. IGF-I and IGF-II are known to play crucial roles in fetal growth and prenatal development, and there is growing evidence that IGF-II increases β-cell proliferation and survival in vitro and in vivo. A search for the source of IGF-II-like immunoreactivity in isolated β-cell secretory granules from the murine cell line βTC6-F7 revealed a novel 2-chain IGF-II-derived peptide, which we named vesiculin and which has been shown to be a full insulin agonist. Here, we present a liquid chromatography-tandem mass spectrometry method that enables selective detection and semiquantitation of the highly related IGF-II and vesiculin molecules. We have used this method to measure these 2 peptides in conditioned media from 2 β-cell lines, produced under increasing glucose concentrations. This technique detected both IGF-II and vesiculin in media conditioned by MIN6 and βTC6-F7 cells at levels in the range of 0 to 6 μM (total insulin, 80-450 μM) and revealed a glucose-stimulated increase in insulin, IGF-II, and vesiculin. IGF-II was detected in adult human and neonatal mouse serum in high levels, but vesiculin was not present. The methodology we present herein has utility for detecting and differentiating active peptides that are highly related and of low abundance.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acido formico, reagent grade, ≥95%
Sigma-Aldrich
Bicarbonato di sodio, ACS reagent, ≥99.7%
Sigma-Aldrich
Metanolo, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acido formico, ACS reagent, ≥96%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Bicarbonato di sodio, powder, BioReagent, Molecular Biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Bicarbonato di sodio, ReagentPlus®, ≥99.5%, powder
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Metanolo, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Acido formico, ACS reagent, ≥88%
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Bicarbonato di sodio, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.7%
Sigma-Aldrich
Metanolo, Absolute - Acetone free
USP
Metanolo, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Metanolo, BioReagent, ≥99.93%
Supelco
Metanolo, analytical standard
Supelco
Metanolo, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Bicarbonato di sodio, BioXtra, 99.5-100.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%