Passa al contenuto
Merck
  • The Cloud Point of Alkyl Ethoxylates and Its Prediction with the Hydrophilic-Lipophilic Difference (HLD) Framework.

The Cloud Point of Alkyl Ethoxylates and Its Prediction with the Hydrophilic-Lipophilic Difference (HLD) Framework.

Langmuir : the ACS journal of surfaces and colloids (2015-10-16)
Silvia Zarate-Muñoz, Americo Boza Troncoso, Edgar Acosta
ABSTRACT

The hydrophobicity of surfactants has been described through different concepts used to guide the formulation of surfactant-water (SW) and surfactant-oil-water (SOW) systems. An integrated framework of hydrophobicity indicators could provide a complete tool for surfactant characterization, and insights on how their relationship may influence the overall phase behavior of the system. The hydrophilic-lipophilic difference (HLD) and the characteristic curvature (Cc) parameter, included in the HLD, have been shown to correlate with different hydrophobicity indicators including the hydrophilic-lipophilic balance (HLB), packing factor (Pf), phase inversion temperature (PIT), spontaneous curvature (Ho), surfactant partition (K(o-w)), and the critical micelle concentration (CMC). This work aims to investigate whether the HLD can further describe a concomitant hydrophobicity parameter, the cloud point (CP) of alkyl ethoxylates. After applying group contribution models to calculate the Cc of monodisperse (pure) nonionic alkyl ethoxylates, a linear correlation between the calculated Cc and the CP was observed for pure surfactants with 8 ethylene oxide (EO) units or less. Furthermore, using an apparent equivalent alkane carbon number (EACN) to represent the hydrophobicity of the micelle core, the HLD equation was capable of predicting cloud point temperatures of pure alkyl ethoxylates, typically within 5 °C. Polydisperse surfactants did not follow the linear CP-Cc correlation found for pure surfactants. After treating polydisperse samples using a liquid-liquid extraction procedure used to remove the most hydrophobic components in the mixture, the resulting treated surfactants fell in the correlation line of pure alkyl ethoxylates. A closer look at the partition behavior of these treated surfactants showed that their partition, Cc and cloud point are dominated by the most abundant ethoxymers in the treated surfactant. The HLD also predicted the cloud point depression of treated surfactants with increasing sodium chloride concentration. This work shows how the HLD framework could be extended to predict the behavior of SW systems.

MATERIALI
Numero di prodotto
Marchio
Descrizione del prodotto

Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Glicerolo, ACS reagent, ≥99.5%
Sigma-Aldrich
Glicerolo, Molecular Biology, ≥99.0%
Sigma-Aldrich
Glicerolo, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Esano, ReagentPlus®, ≥99%
Sigma-Aldrich
Cicloesano, ACS reagent, ≥99%
Sigma-Aldrich
Metanolo, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Glicerolo, ≥99.5%
Sigma-Aldrich
Metanolo, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Glicerolo, 83.5-89.5% (T)
Sigma-Aldrich
Esano, Laboratory Reagent, ≥95%
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Glicerolo, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glicerolo, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Metanolo, Absolute - Acetone free
Sigma-Aldrich
Glicerolo, BioXtra, ≥99% (GC)
Sigma-Aldrich
Metanolo, BioReagent, ≥99.93%
Sigma-Aldrich
Glicerolo, FCC, FG
Sigma-Aldrich
Glicerolo, meets USP testing specifications
Sigma-Aldrich
Metanolo, ACS reagent, ≥99.8%
Sigma-Aldrich
Decaidronaftalene, miscela di cis + trans, reagent grade, 98%
Sigma-Aldrich
Cicloesano, ACS reagent, ≥99%
Sigma-Aldrich
Decaidronaftalene, miscela di cis + trans, anhydrous, ≥99%
Sigma-Aldrich
Metanolo, suitable for NMR (reference standard)
Sigma-Aldrich
Glicerolo, Vetec, reagent grade, 99%