Przejdź do zawartości
Merck
  • Improved callus induction, shoot regeneration, and salt stress tolerance in Arabidopsis overexpressing superoxide dismutase from Potentilla atrosanguinea.

Improved callus induction, shoot regeneration, and salt stress tolerance in Arabidopsis overexpressing superoxide dismutase from Potentilla atrosanguinea.

Protoplasma (2014-05-20)
Amrina Shafi, Tejpal Gill, Yelam Sreenivasulu, Sanjay Kumar, Paramvir Singh Ahuja, Anil Kumar Singh
ABSTRAKT

Superoxide dismutase (SOD) catalyzes the dismutation of superoxide radicals (O₂( ·-)) to molecular oxygen (O₂) and hydrogen peroxide (H₂O₂). Previously, we have identified and characterized a thermo-tolerant copper-zinc superoxide dismutase from Potentilla atrosanguinea (PaSOD), which retains its activity in the presence of NaCl. In the present study, we show that cotyledonary explants of PaSOD overexpressing transgenic Arabidopsis thaliana exhibit early callus induction and high shoot regenerative capacity than wild-type (WT) explants. Growth kinetic studies showed that transgenic lines have 2.6-3.3-folds higher growth rate of calli compared to WT. Regeneration frequency of calli developed from transgenic cotyledons was found to be 1.5-2.5-folds higher than that of WT explants on Murashige and Skoog medium supplemented with different concentrations of naphthalene acetic acid (NAA) and 6-benzylaminopurine (BAP) within 2 weeks. A positive regulatory effect of PaSOD and H₂O₂ was observed on different stages of callusing and regeneration. However, this effect was more pronounced at the early stages of the regeneration processes in transgenic lines as compared to WT. These results clearly indicate that plant regeneration is regulated by endogenous H₂O₂ and by factors, which enhance its accumulation. Transgenics also exhibited salt stress tolerance with higher SOD activity, chlorophyll content, total soluble sugars, and proline content, while lower ion leakage and less reduction in relative water content, as compared to WT. Thus, it appears that the activation of PaSOD at regeneration stage accompanied by increased H₂O₂ production can be one of the mechanisms controlling in vitro morphogenesis.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
2,4-Dichlorophenoxyacetic acid, 97%
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2,4-Dichlorophenoxyacetic acid, ≥95%, crystalline
Sigma-Aldrich
Sucrose, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sucrose, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Millipore
Sucrose, suitable for microbiology, ACS reagent, ≥99.0%
Sucrose, European Pharmacopoeia (EP) Reference Standard
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M