Przejdź do zawartości
Merck
  • Melatonin and amfenac modulate calcium entry, apoptosis, and oxidative stress in ARPE-19 cell culture exposed to blue light irradiation (405 nm).

Melatonin and amfenac modulate calcium entry, apoptosis, and oxidative stress in ARPE-19 cell culture exposed to blue light irradiation (405 nm).

Eye (London, England) (2014-03-08)
M Argun, L Tök, A C Uğuz, Ö Çelik, Ö Y Tök, M Naziroğlu
ABSTRAKT

Under conditions of oxidative stress, cell apoptosis is triggered through the mitochondrial intrinsic pathway. Increased levels of reactive oxygen species (ROS) are linked to excess cell loss and mediate the initiation of apoptosis in a diverse range of cell types. The aims of this study were to assess intracellular Ca(2+) release, ROS production, and caspase-3, and -9 activation in ARPE-19 cells during the blue light-mediated cell death, and to examine a potential protective effect of melatonin and amfenac, in the apoptotic cascade. ARPE-19 cells were cultured in their medium. First, MTT tests were performed to determine the protective effects of amfenac and melatonin. Cells were then exposed to blue light irradiation in an incubator. Intracellular Ca(2+) release experiments, mitochondrial membrane depolarization, apoptosis assay, glutathione (GSH), glutathione peroxidase (GSH-Px), and ROS experiments were done according to the method stated in the Materials and methods section. Cell death was clearly associated with increased levels of ROS production, as measured by 2',7'-dichlorofluorescein fluorescence, and associated increase in Ca(2+) levels, as measured by Fura-2-AM. Blue light-induced cell death was associated with an increased level of caspase-3 and 9, suggesting mediation via the apoptotic pathway. Cell death was also associated with mitochondrial depolarization. Melatonin was shown to delay these three steps. Melatonin, amfenac, and their combination protect ARPE-19 cells against blue light-triggered ROS accumulation and caspase-3 and -9 activation. The antiapoptotic effect of melatonin and amfenac at doses inhibiting caspase synthesis modified Ca(2+) release and prevented excessive ROS production, suggesting a new therapeutic approach to age-related macular degeneration.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
2-(2-Aminoethoxy)ethylamine, AldrichCPR
Sigma-Aldrich
Ethylene glycol 5 M solution
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
1,1,3,3-Tetraethoxypropane, ≥96%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥95%
Sigma-Aldrich
Hexane, Laboratory Reagent, ≥95%
Sigma-Aldrich
Cumene hydroperoxide, technical grade, 80%
Supelco
Hexane, analytical standard
Butylhydroxytoluene, European Pharmacopoeia (EP) Reference Standard
Supelco
Ethylene glycol solution, suitable for NMR (reference standard), 80% in DMSO-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
2-Thiobarbituric acid, ≥98%
Sigma-Aldrich
Ethylene glycol, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium hydroxide, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Sodium hydroxide solution, 5.0 M
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, flakes
Sigma-Aldrich
Sodium hydroxide, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
Ethylene glycol, spectrophotometric grade, ≥99%
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, powder