Skip to Content
MilliporeSigma
  • Role of adenosine receptor subtypes in methamphetamine reward and reinforcement.

Role of adenosine receptor subtypes in methamphetamine reward and reinforcement.

Neuropharmacology (2014-10-11)
Kevin A Kavanagh, Drew C Schreiner, Sophia C Levis, Casey E O'Neill, Ryan K Bachtell
ABSTRACT

The neurobiology of methamphetamine (MA) remains largely unknown despite its high abuse liability. The present series of studies explored the role of adenosine receptors on MA reward and reinforcement and identified alterations in the expression of adenosine receptors in dopamine terminal areas following MA administration in rats. We tested whether stimulating adenosine A1 or A2A receptor subtypes would influence MA-induced place preference or MA self-administration on fixed and progressive ratio schedules in male Sprague-Dawley rats. Stimulation of either adenosine A1 or A2A receptors significantly reduced the development of MA-induced place preference. Stimulating adenosine A1, but not A2A, receptors reduced MA self-administration responding. We next tested whether repeated experimenter-delivered MA administration would alter the expression of adenosine receptors in the striatal areas using immunoblotting. We observed no change in the expression of adenosine receptors. Lastly, rats were trained to self-administer MA or saline for 14 days and we detected changes in adenosine A1 and A2A receptor expression using immunoblotting. MA self-administration significantly increased adenosine A1 in the nucleus accumbens shell, caudate-putamen and prefrontal cortex. MA self-administration significantly decreased adenosine A2A receptor expression in the nucleus accumbens shell, but increased A2A receptor expression in the amygdala. These findings demonstrate that MA self-administration produces selective alterations in adenosine receptor expression in the nucleus accumbens shell and that stimulation of adenosine receptors reduces several behavioral indices of MA addiction. Together, these studies shed light onto the neurobiological alterations incurred through chronic MA use that may aid in the development of treatments for MA addiction.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sucrose, JIS special grade
Sigma-Aldrich
Sucrose, SAJ first grade
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Adenosine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Adenosine
Sigma-Aldrich
Sucrose, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Millipore
Sucrose, suitable for microbiology, ACS reagent, ≥99.0%
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Adenosine, BioReagent, suitable for cell culture
Sigma-Aldrich
Adenosine, ≥99%
Sigma-Aldrich
Sucrose, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sucrose, European Pharmacopoeia (EP) Reference Standard
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Adenosine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Hydrochloric acid solution, 1 M
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 0.1 M in ethanol