Skip to Content
MilliporeSigma
  • A critical period of neuronal activity results in aberrant neurogenesis rewiring hippocampal circuitry in a mouse model of epilepsy.

A critical period of neuronal activity results in aberrant neurogenesis rewiring hippocampal circuitry in a mouse model of epilepsy.

Nature communications (2021-03-05)
Zane R Lybrand, Sonal Goswami, Jingfei Zhu, Veronica Jarzabek, Nikolas Merlock, Mahafuza Aktar, Courtney Smith, Ling Zhang, Parul Varma, Kyung-Ok Cho, Shaoyu Ge, Jenny Hsieh
ABSTRACT

In the mammalian hippocampus, adult-born granule cells (abGCs) contribute to the function of the dentate gyrus (DG). Disruption of the DG circuitry causes spontaneous recurrent seizures (SRS), which can lead to epilepsy. Although abGCs contribute to local inhibitory feedback circuitry, whether they are involved in epileptogenesis remains elusive. Here, we identify a critical window of activity associated with the aberrant maturation of abGCs characterized by abnormal dendrite morphology, ectopic migration, and SRS. Importantly, in a mouse model of temporal lobe epilepsy, silencing aberrant abGCs during this critical period reduces abnormal dendrite morphology, cell migration, and SRS. Using mono-synaptic tracers, we show silencing aberrant abGCs decreases recurrent CA3 back-projections and restores proper cortical connections to the hippocampus. Furthermore, we show that GABA-mediated amplification of intracellular calcium regulates the early critical period of activity. Our results demonstrate that aberrant neurogenesis rewires hippocampal circuitry aggravating epilepsy in mice.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3-Methylpyridine, ≥99.5%
Sigma-Aldrich
Anti-Prox 1 Antibody, serum, Chemicon®
Sigma-Aldrich
Anti-GluR2 Antibody, from rabbit, purified by affinity chromatography
Sigma-Aldrich
Anti-Parvalbumin Antibody, ascites fluid, clone PARV-19, Chemicon®