• Home
  • Search Results
  • Capillary electromigration techniques as tools for assessing the status of vitamins A, C and E in patients with cystic fibrosis.

Capillary electromigration techniques as tools for assessing the status of vitamins A, C and E in patients with cystic fibrosis.

Journal of pharmaceutical and biomedical analysis (2014-09-23)
Ilona Olędzka, Katarzyna Kaźmierska, Alina Plenis, Barbara Kamińska, Tomasz Bączek
ABSTRACT

The purpose of this work is the evaluation of the nutritional status of patients with cystic fibrosis (CF), based on the level of vitamin C in urine and vitamins A and E in serum, using the fast, selective and fully automated micellar electrokinetic capillary chromatographic (MEKC) and microemulsion electrokinetic capillary chromatographic (MEEKC) methods. The optimization of parameters affecting the electrophoretic separation provided adequate separation of the analytes of interest in the short time of 8 min (MEKC) and 20 min (MEEKC). The developed methods were practical applications to evaluate the levels of vitamins A, C and E in real samples from 28 children suffering from cystic fibrosis and from 10 healthy volunteers. Based on the mean concentration values obtained in the two groups, it can be seen that the levels of each vitamin were lower in patients with CF than in healthy volunteers. In the case of vitamin E, these differences in both groups were statistically significant, while the disproportion of concentrations of vitamins A and C in both the studied groups were not so relevant. On the other hand, a principal component analysis (PCA) confirmed that in some patients with CF the concentration of vitamin A was significantly lower than in the control group. Thus, the future evaluation of the status of fat-soluble vitamins in the longer term for the evaluation of the nutritional status of patients with CF should be continued. The presented CE methods can become useful tools for the evaluation of the nutritional status of patients with CF.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
2-Propanol, BioReagent, for molecular biology, ≥99.5%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Supelco
Methanol, analytical standard
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Dichloromethane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
2-Propanol, anhydrous, 99.5%
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Hexane, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
Hexane, anhydrous, 95%
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Boric acid, ACS reagent, ≥99.5%