Skip to Content
MilliporeSigma
  • Using quantitative structure activity relationship models to predict an appropriate solvent system from a common solvent system family for countercurrent chromatography separation.

Using quantitative structure activity relationship models to predict an appropriate solvent system from a common solvent system family for countercurrent chromatography separation.

Journal of chromatography. A (2015-05-02)
Siân Marsden-Jones, Nicola Colclough, Ian Garrard, Neil Sumner, Svetlana Ignatova
ABSTRACT

Countercurrent chromatography (CCC) is a form of liquid-liquid chromatography. It works by running one immiscible solvent (mobile phase) over another solvent (stationary phase) being held in a CCC column using centrifugal force. The concentration of compound in each phase is characterised by the partition coefficient (Kd), which is the concentration in the stationary phase divided by the concentration in the mobile phase. When Kd is between approximately 0.2 and 2, it is most likely that optimal separation will be achieved. Having the Kd in this range allows the compound enough time in the column to be separated without resulting in a broad peak and long run time. In this paper we report the development of quantitative structure activity relationship (QSAR) models to predict logKd. The QSAR models use only the molecule's 2D structure to predict the molecular property logKd.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, suitable for residue analysis, JIS 5000
Sigma-Aldrich
Ethyl acetate, suitable for HPLC
Sigma-Aldrich
Acetonitrile, suitable for chromatography
Sigma-Aldrich
Trifluoroacetic acid, SAJ special grade, ≥99.0%
Sigma-Aldrich
Acetonitrile, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethyl acetate, JIS 300, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethyl acetate, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for residue analysis, JIS 300
Sigma-Aldrich
Ethyl acetate, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for residue analysis, JIS 1000
Sigma-Aldrich
Ethyl acetate, JIS 1000, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Acetonitrile, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for HPLC
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Acetonitrile, HPLC grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Methanol solution, suitable for NMR (reference standard), 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Ethyl acetate, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%