Przejdź do zawartości
Merck

Autophagy and senescence, stress responses induced by the DNA-damaging mycotoxin alternariol.

Toxicology (2014-12-03)
A Solhaug, M L Torgersen, J A Holme, D Lagadic-Gossmann, G S Eriksen
ABSTRAKT

The mycotoxin alternariol (AOH), a frequent contaminant in fruit and grain, is known to induce cellular stress responses such as reactive oxygen production, DNA damage and cell cycle arrest. Cellular stress is often connected to autophagy, and we employed the RAW264.7 macrophage model to test the hypothesis that AOH induces autophagy. Indeed, AOH treatment led to a massive increase in acidic vacuoles often observed upon autophagy induction. Moreover, expression of the autophagy marker LC3 was markedly increased and there was a strong accumulation of LC3-positive puncta. Increased autophagic activity was verified biochemically by measuring the degradation rate of long-lived proteins. Furthermore, AOH induced expression of Sestrin2 and phosphorylation of AMPK as well as reduced phosphorylation of mTOR and S6 kinase, common mediators of signaling pathways involved in autophagy. Transmission electron microscopy analyzes of AOH treated cells not only clearly displayed structures associated with autophagy such as autophagosomes and autolysosomes, but also the appearance of lamellar bodies. Prolonged AOH treatment resulted in changed cell morphology from round into more star-shaped as well as increased β-galactosidase activity. This suggests that the cells eventually entered senescence. In conclusion, our data identify here AOH as an inducer of both autophagy and senescence. These effects are suggested to be to be linked to AOH-induced DSB (via a reported effect on topoisomerase activity), resulting in an activation of p53 and the Sestrin2-AMPK-mTOR-S6K signaling pathway.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Acridine Orange hydrochloride solution, 10 mg/mL in H2O, ≥95.0% (HPLC)
Sigma-Aldrich
Hexokinase from Saccharomyces cerevisiae, Type F-300, lyophilized powder, ≥130 units/mg protein (biuret)
Sigma-Aldrich
Amyloid Protein Non-Aβ Component, ≥80% (HPLC)
Sigma-Aldrich
Hexokinase from Saccharomyces cerevisiae, lyophilized powder, ≥350 units/mg protein, Protein ≥10 % by biuret
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Valine, European Pharmacopoeia (EP) Reference Standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
USP
Acetylocysteina, United States Pharmacopeia (USP) Reference Standard
Acetylcysteine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Alkohol metylowy, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
DL-Valine, ≥97%
Sigma-Aldrich
N-Acetyl-L-cysteine, BioXtra, ≥99% (TLC)
Sigma-Aldrich
Concanamycin A, ≥70% (HPLC)
Sigma-Aldrich
Alternariol from Alternaria sp., ~96%
Sigma-Aldrich
N-Acetyl-L-cysteine, suitable for cell culture, BioReagent
Supelco
N-Acetyl-L-cysteine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
N-Acetyl-L-cysteine, Sigma Grade, ≥99% (TLC), powder
Sigma-Aldrich
DL-Valine, ReagentPlus®, ≥99.0% (NT)
Supelco
Alternariol, analytical standard