Przejdź do zawartości
Merck
  • Quantitative phosphoproteomic analysis of signaling downstream of the prostaglandin e2/g-protein coupled receptor in human synovial fibroblasts: potential antifibrotic networks.

Quantitative phosphoproteomic analysis of signaling downstream of the prostaglandin e2/g-protein coupled receptor in human synovial fibroblasts: potential antifibrotic networks.

Journal of proteome research (2014-09-17)
Casimiro Gerarduzzi, QingWen He, John Antoniou, John A Di Battista
ABSTRAKT

The Prostaglandin E2 (PGE2) signaling mechanism within fibroblasts is of growing interest as it has been shown to prevent numerous fibrotic features of fibroblast activation with limited evidence of downstream pathways. To understand the mechanisms of fibroblasts producing tremendous amounts of PGE2 with autocrine effects, we apply a strategy of combining a wide-screening of PGE2-induced kinases with quantitative phosphoproteomics. Our large-scale proteomic approach identified a PKA signal transmitted through phosphorylation of its substrates harboring the R(R/X)X(S*/T*) motif. We documented 115 substrates, of which 72 had 89 sites with a 2.5-fold phosphorylation difference in PGE2-treated cells than in untreated cells, where approximately half of such sites were defined as being novel. They were compiled by networking software to focus on highlighted activities and to associate them with a functional readout of fibroblasts. The substrates were associated with a variety of cellular functions including cytoskeletal structures (migration/motility), regulators of G-protein coupled receptor function, protein kinases, and transcriptional/translational regulators. For the first time, we extended the PGE2 pathway into an elaborate network of interconnecting phosphoproteins, providing vital information to a once restricted signalosome. These data provide new insights into eicosanoid-initiated cell signaling with regards to the regulation of fibroblast activation and the identification of new targets for evidenced-based pharmacotherapy against fibrosis.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Supelco
Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Formamide, spectrophotometric grade, ≥99%
Sigma-Aldrich
Formamide, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
N,N′-Methylenebis(acrylamide), 99%
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99% (HPLC), powder
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99%
Sigma-Aldrich
N,N′-Methylenebisacrylamide, powder, Molecular Biology, suitable for electrophoresis, ≥99.5%