Przejdź do zawartości
Merck

Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish.

Proceedings of the National Academy of Sciences of the United States of America (2015-01-15)
Cassandra D Kinch, Kingsley Ibhazehiebo, Joo-Hyun Jeong, Hamid R Habibi, Deborah M Kurrasch
ABSTRAKT

Bisphenol A (BPA), a ubiquitous endocrine disruptor that is present in many household products, has been linked to obesity, cancer, and, most relevant here, childhood neurological disorders such as anxiety and hyperactivity. However, how BPA exposure translates into these neurodevelopmental disorders remains poorly understood. Here, we used zebrafish to link BPA mechanistically to disease etiology. Strikingly, treatment of embryonic zebrafish with very low-dose BPA (0.0068 μM, 1,000-fold lower than the accepted human daily exposure) and bisphenol S (BPS), a common analog used in BPA-free products, resulted in 180% and 240% increases, respectively, in neuronal birth (neurogenesis) within the hypothalamus, a highly conserved brain region involved in hyperactivity. Furthermore, restricted BPA/BPS exposure specifically during the neurogenic window caused later hyperactive behaviors in zebrafish larvae. Unexpectedly, we show that BPA-mediated precocious neurogenesis and the concomitant behavioral phenotype were not dependent on predicted estrogen receptors but relied on androgen receptor-mediated up-regulation of aromatase. Although human epidemiological results are still emerging, an association between high maternal urinary BPA during gestation and hyperactivity and other behavioral disturbances in the child has been suggested. Our studies here provide mechanistic support that the neurogenic period indeed may be a window of vulnerability and uncovers previously unexplored avenues of research into how endocrine disruptors might perturb early brain development. Furthermore, our results show that BPA-free products are not necessarily safer and support the removal of all bisphenols from consumer merchandise.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, Molecular Biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide, BioUltra, suitable for luminescence, ≥98.0% (T), pellets
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Fulvestrant, >98% (HPLC)
Sigma-Aldrich
Flutamide
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Amiodarone hydrochloride, ≥98%
Flutamide for system suitability, European Pharmacopoeia (EP) Reference Standard
Flutamide, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, powder
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Sodium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, flakes
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Sodium hydroxide, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Sodium hydroxide, pellets, semiconductor grade, 99.99% trace metals basis