Inhibition of SOAT1 Suppresses Glioblastoma Growth via Blocking SREBP-1-Mediated Lipogenesis.

Clinical cancer research : an official journal of the American Association for Cancer Research (2016-11-03)
Feng Geng, Xiang Cheng, Xiaoning Wu, Ji Young Yoo, Chunming Cheng, Jeffrey Yunhua Guo, Xiaokui Mo, Peng Ru, Brian Hurwitz, Sung-Hak Kim, Jose Otero, Vinay Puduvalli, Etienne Lefai, Jianjie Ma, Ichiro Nakano, Craig Horbinski, Balveen Kaur, Arnab Chakravarti, Deliang Guo
ABSTRAKT

Elevated lipogenesis regulated by sterol regulatory element-binding protein-1 (SREBP-1), a transcription factor playing a central role in lipid metabolism, is a novel characteristic of glioblastoma (GBM). The aim of this study was to identify effective approaches to suppress GBM growth by inhibition of SREBP-1. As SREBP activation is negatively regulated by endoplasmic reticulum (ER) cholesterol, we sought to determine whether suppression of sterol O-acyltransferase (SOAT), a key enzyme converting ER cholesterol to cholesterol esters (CE) to store in lipid droplets (LDs), effectively suppressed SREBP-1 and blocked GBM growth. The presence of LDs in glioma patient tumor tissues was analyzed using immunofluorescence, immunohistochemistry, and electronic microscopy. Western blotting and real-time PCR were performed to analyze protein levels and gene expression of GBM cells, respectively. Intracranial GBM xenografts were used to determine the effects of genetically silencing SOAT1 and SREBP-1 on tumor growth. Our study unraveled that cholesterol esterification and LD formation are signature of GBM, and human patients with glioma possess elevated LDs that correlate with GBM progression and poor survival. We revealed that SOAT1 is highly expressed in GBM and functions as a key player in controlling the cholesterol esterification and storage in GBM. Targeting SOAT1 suppresses GBM growth and prolongs survival in xenograft models via inhibition of SREBP-1-regulated lipid synthesis. Cholesterol esterification and storage in LDs are novel characteristics of GBM, and inhibiting SOAT1 to block cholesterol esterification is a promising therapeutic strategy to treat GBM by suppressing SREBP-1. Clin Cancer Res; 22(21); 5337-48. ©2016 AACR.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Triton X-100, for molecular biology
Sigma-Aldrich
Heparin sodium salt from porcine intestinal mucosa, Grade I-A, ≥180 USP units/mg
Sigma-Aldrich
Paraformaldehyde, reagent grade, crystalline
Sigma-Aldrich
hEGF, EGF, recombinant, expressed in E. coli, lyophilized powder, suitable for cell culture
Sigma-Aldrich
Anti-β-Actin antibody, Mouse monoclonal, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
Leupeptin, microbial, ≥90% (HPLC)
Sigma-Aldrich
Hexadimethrine bromide, ≥94% (titration)
Sigma-Aldrich
L-(−)-Glucose, ≥99%
Sigma-Aldrich
MISSION® pLKO.1-puro Non-Mammalian shRNA Control Plasmid DNA, Targets no known mammalian genes
Sigma-Aldrich
L-(−)-Dithiothreitol, ≥95%
Sigma-Aldrich
MISSION® esiRNA, targeting human SOAT1
Sigma-Aldrich
MISSION® esiRNA, targeting human SREBF2

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

Merck

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.