Skip to Content
MilliporeSigma
  • In vitro characterization of self-assembled anterior cruciate ligament cell spheroids for ligament tissue engineering.

In vitro characterization of self-assembled anterior cruciate ligament cell spheroids for ligament tissue engineering.

Histochemistry and cell biology (2014-09-27)
M Hoyer, C Meier, A Breier, J Hahner, G Heinrich, N Drechsel, M Meyer, C Rentsch, L-A Garbe, W Ertel, A Lohan, G Schulze-Tanzil
ABSTRACT

Tissue engineering of an anterior cruciate ligament (ACL) implant with functional enthesis requires site-directed seeding of different cell types on the same scaffold. Therefore, we studied the suitability of self-assembled three-dimensional spheroids generated by lapine ACL ligament fibroblasts for directed scaffold colonization. The spheroids were characterized in vitro during 14 days in static and 7 days in dynamic culture. Size maintenance of self-assembled spheroids, the vitality, the morphology and the expression pattern of the cells were monitored. Additionally, we analyzed the total sulfated glycosaminoglycan, collagen contents and the expression of the ligament components type I collagen, decorin and tenascin C on protein and for COL1A1, DCN and TNMD on gene level in the spheroids. Subsequently, the cell colonization of polylactide-co-caprolactone [P(LA-CL)] and polydioxanone (PDS) polymer scaffolds was assessed in response to a directed, spheroid-based seeding technique. ACL cells were able to self-assemble spheroids and survive over 14 days. The spheroids decreased in size but not in cellularity depending on the culture time and maintained or even increased their differentiation state. The area of P[LA-CL] scaffolds, colonized after 14 days by the cells of one spheroid, was in average 4.57 ± 2.3 mm(2). Scaffolds consisting of the polymer P[LA-CL] were more suitable for colonization by spheroids than PDS embroideries. We conclude that ACL cell spheroids are suitable as site-directed seeding strategy for scaffolds in ACL tissue engineering approaches and recommend the use of freshly assembled spheroids for scaffold colonization, due to their balanced proliferation and differentiation.

MATERIALS
Product Number
Brand
Product Description

Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Glycine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ammonia solution, 2.0 M in ethanol
Sigma-Aldrich
Ammonia solution, 2.0 M in isopropanol
Sigma-Aldrich
Ammonia solution, 7 N in methanol
Sigma-Aldrich
Hydrogen chloride solution, 2.0 M in diethyl ether
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX ultra, from peat, steam activated and acid washed, highly purified, powder
Sigma-Aldrich
Hydrogen chloride solution, 4.0 M in dioxane
Sigma-Aldrich
Ammonia solution, 0.4 M in dioxane
Sigma-Aldrich
Hydrochloric acid, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Hydrochloric acid, puriss., 24.5-26.0%
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, steam activated, rod
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, steam activated, granular
Sigma-Aldrich
Ammonia solution, 2.0 M in methanol
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Activated Charcoal Norit®, Norit® CA1, wood, chemically activated, powder
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrochloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in diethyl ether
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in acetic acid
Sigma-Aldrich
Hydrochloric acid, 37 wt. % in H2O, 99.999% trace metals basis
Diacetylfluorescein, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Carbon, mesoporous, less than 100 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Supelco
Glycine, analytical standard, for nitrogen determination according to Kjeldahl method
Sigma-Aldrich
Carbon, mesoporous, nanopowder, less than 500 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, nanopowder, graphitized, less than 250 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Sodium chloride, SAJ first grade, ≥99.0%
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%