Skip to Content
MilliporeSigma
  • Simultaneous determination of the bilirubin oxidation end products Z-BOX A and Z-BOX B in human serum using liquid chromatography coupled to tandem mass spectrometry.

Simultaneous determination of the bilirubin oxidation end products Z-BOX A and Z-BOX B in human serum using liquid chromatography coupled to tandem mass spectrometry.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2014-12-03)
Raphael A Seidel, Marcel Kahnes, Michael Bauer, Georg Pohnert
ABSTRACT

Bilirubin oxidation end products (BOXes) appear upon endogenous heme degradation and can be found in the cerebrospinal fluid after hemorrhagic stroke. BOXes are assumed to contribute to delayed cerebral vasospasm and secondary loss of brain tissue. Here, we present a validated LC-ESI-MS/MS method for the sensitive determination of the regio-isomers Z-BOX A and Z-BOX B in human serum. We found that Z-BOX A and Z-BOX B appear in serum of healthy volunteers. The sample preparation includes the addition of 5-bromonicotinamide as internal standard and protein precipitation with acetonitrile. Baseline-separation was achieved on a C-18 column with a binary solvent gradient of formic acid in water/acetonitrile at 1 mL/min within a total analysis time of 17 min. Using single reaction monitoring in the positive ion mode, the linear working ranges were 2.74-163 pg/μL (Z-BOX A) and 2.12-162.4 pg/μL (Z-BOX B) with R(2)>0.995. Intra- and inter-day precisions were <10%. The inherent analyte concentrations of Z-BOX A (14.4 ± 5.1 nM) and Z-BOX B (10.9 ± 3.1 nM) in pooled human serum were determined by standard addition. The photolability of both analytes was demonstrated. This method enables to monitor Z-BOX A and Z-BOX B as a prerequisite to systematically study the biological significance of higher order metabolites of heme degradation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 0.1 M in ethanol
Sigma-Aldrich
Hydrogen peroxide solution, SAJ first grade, ≥30.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Sodium hydroxide solution, 1 M
Sigma-Aldrich
Sodium hydroxide solution, 0.01 M
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Sodium hydroxide solution, 7 M
Sigma-Aldrich
Sodium hydroxide, JIS special grade, ≥96.0%
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrochloric acid, JIS special grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Sigma-Aldrich
Hydrochloric acid solution, 2 M
Sigma-Aldrich
Sodium hydroxide solution, 0.1 M
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Sodium hydroxide solution, 4 M
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Supelco
Hydrogen peroxide solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Sodium hydroxide, SAJ first grade, ≥95.0%
Sigma-Aldrich
Sodium hydroxide solution, 0.2 M
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology