Skip to Content
MilliporeSigma
  • Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.

Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.

Materials science & engineering. C, Materials for biological applications (2014-10-05)
Ayşegül Doğan, Selami Demirci, Yasin Bayir, Zekai Halici, Emre Karakus, Ali Aydin, Elif Cadirci, Abdulmecit Albayrak, Elif Demirci, Adem Karaman, Arif Kursat Ayan, Cemal Gundogdu, Fikrettin Sahin
ABSTRACT

Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering.

MATERIALS
Product Number
Brand
Product Description

Carbon - Vitreous, rod, 200mm, diameter 5.0mm, glassy carbon
Carbon - Vitreous, foil, 50x50mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 7.0mm, glassy carbon
Carbon - Vitreous, foil, 50x50mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, foam, 300x300mm, thickness 30mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, foil, 100x100mm, thickness 2.0mm, glassy carbon
Carbon - Vitreous, rod, 200mm, diameter 1.0mm, glassy carbon
Carbon - Vitreous, rod, 50mm, diameter 1.0mm, glassy carbon
Carbon - Vitreous, foil, 8x8mm, thickness 0.5mm, glassy carbon
Carbon - Vitreous, foil, 100x100mm, thickness 6.0mm, glassy carbon
Carbon - Vitreous, foil, 100x100mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, foam, 150x150mm, thickness 2.5mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, rod, 200mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, foil, 10x10mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, tube, 50mm, outside diameter 10mm, inside diameter 3mm, wall thickness 3.5mm, glassy carbon
Carbon - Vitreous, foam, 150x150mm, 0.05g.cmué, porosity 96.5%, 24 pores/cm
Carbon - Vitreous, foam, 150x150mm, thickness 3.2mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, rod, 100mm, diameter 5.0mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 1.0mm, glassy carbon
Carbon - Vitreous, foil, 25x25mm, thickness 0.5mm, glassy carbon
Carbon - Vitreous, foil, 10x10mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, foam, 300x300mm, thickness 20mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, foil, 25x25mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, rod, 5mm, diameter 3.0mm, glassy carbon
Carbon - Vitreous, tube, 100mm, outside diameter 10mm, inside diameter 3mm, wall thickness 3.5mm, glassy carbon
Sigma-Aldrich
Glycolide, ≥99%
Sigma-Aldrich
3,6-Dimethyl-1,4-dioxane-2,5-dione, 99%
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, ≥90% (HPLC)
Sigma-Aldrich
Hexamethyldisilazane, reagent grade, ≥99%