Skip to Content
MilliporeSigma

Process development for scum to biodiesel conversion.

Bioresource technology (2015-03-17)
Chong-hao Bi, Min Min, Yong Nie, Qing-long Xie, Qian Lu, Xiang-yuan Deng, Erik Anderson, Dong Li, Paul Chen, Roger Ruan
ABSTRACT

A novel process was developed for converting scum, a waste material from wastewater treatment facilities, to biodiesel. Scum is an oily waste that was skimmed from the surface of primary and secondary settling tanks in wastewater treatment plants. Currently scum is treated either by anaerobic digestion or landfilling which raised several environmental issues. The newly developed process used a six-step method to convert scum to biodiesel, a higher value product. A combination of acid washing and acid catalyzed esterification was developed to remove soap and impurities while converting free fatty acids to methyl esters. A glycerol washing was used to facilitate the separation of biodiesel and glycerin after base catalyzed transesterification. As a result, 70% of dried and filtered scum was converted to biodiesel which is equivalent to about 134,000 gallon biodiesel per year for the Saint Paul waste water treatment plant in Minnesota.

MATERIALS
Product Number
Brand
Product Description

Supelco
Sulfuric acid concentrate, 0.1 M H2SO4 in water (0.2N), eluent concentrate for IC
Sigma-Aldrich
Phosphoric acid-16O4 solution, 70 wt. % in D2O, 99.9 atom % 16O
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Potassium hydroxide solution, 0.5 M in ethanol
Sigma-Aldrich
Potassium hydroxide solution, 0.02 M in ethanol
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Potassium hydroxide solution, 0.1 M in isopropanol
Sigma-Aldrich
2,6-Di-tert-butyl-4-methylphenol, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Potassium hydroxide solution, 0.5 M
Sigma-Aldrich
Potassium hydroxide solution, 0.1 M in ethanol
Sigma-Aldrich
Glycerol, JIS special grade, ≥99.0%
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Potassium hydroxide solution, 1 M
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Potassium hydroxide solution, 0.1 M
Sigma-Aldrich
Glycerol, SAJ first grade, ≥98.0%
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Phosphoric acid, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Phosphoric acid, ≥85 wt. % in H2O, ≥99.999% trace metals basis
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Glycerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
2,6-Di-tert-butyl-4-methylphenol, tested according to Ph. Eur.