Skip to Content
MilliporeSigma
  • Cytocompatibility of the selected calcium phosphate based bone cements: comparative study in human cell culture.

Cytocompatibility of the selected calcium phosphate based bone cements: comparative study in human cell culture.

Journal of materials science. Materials in medicine (2015-10-30)
Radosław Olkowski, Piotr Kaszczewski, Joanna Czechowska, Dominika Siek, Dawid Pijocha, Aneta Zima, Anna Ślósarczyk, Małgorzata Lewandowska-Szumieł
ABSTRACT

Calcium phosphate cements (CPC) are valuable bone fillers. Recently they have been also considered as the basis for drug-, growth factors- or cells-delivery systems. Broad possibilities to manipulate CPC composition provide a unique opportunity to obtain materials with a wide range of physicochemical properties. In this study we show that CPC composition significantly influences cell response. Human bone derived cells were exposed to the several well-characterized different cements based on calcium phosphates, magnesium phosphates and calcium sulfate hemihydrate (CSH). Cell viability assays, live/dead staining and real-time observation of cells in contact with the materials (time-laps) were performed. Although all the investigated materials have successfully passed a standard cytocompatibility assay, cell behavior in a direct contact with the materials varied depending on the material and the experimental system. The most recommended were the α-TCP-based materials which proved suitable as a support for cells in a direct contact. The materials which caused a decrease of calcium ions concentration in culture induced the negative cell response, however this effect might be expected efficiently compensated in vivo. All the materials consisting of CSH had negative impact on the cells. The obtained results strongly support running series of cytocompatibility studies for preclinical evaluation of bone cements.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic acid solution, suitable for HPLC
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acetic acid, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acetic acid, glacial, puriss., 99-100%
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.8-100.5%
Sigma-Aldrich
Hydroxyapatite, nanoparticles, dispersion, 10 wt. % in H2O, <200 nm particle size (BET)
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Acetic acid, JIS special grade, ≥99.7%
Sigma-Aldrich
Acetic acid, 99.5-100.0%
Sigma-Aldrich
Acetic acid, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Acetic acid, ≥99.7%, suitable for amino acid analysis
Sigma-Aldrich
Aluminum oxide, mesoporous, MSU-X (wormhole), average pore size 3.8 nm
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
Hydroxyapatite, powder, synthetic
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid solution, 1 N, 1 M
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Acetic acid, suitable for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Hydroxyapatite, nanopowder, <200 nm particle size (BET), ≥97%, synthetic
Sigma-Aldrich
Calcium phosphate tribasic, 34.0-40.0% Ca basis
Sigma-Aldrich
Calcium phosphate tribasic, BioReagent, suitable for plant cell culture, powder
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline