Skip to Content
MilliporeSigma
  • Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype.

Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype.

Biomaterials (2015-10-05)
Kelly M Mabry, Samuel Z Payne, Kristi S Anseth
ABSTRACT

Valvular interstitial cells (VICs) actively maintain and repair heart valve tissue; however, persistent activation of VICs to a myofibroblast phenotype can lead to aortic stenosis. To better understand and quantify how microenvironmental cues influence VIC phenotype and myofibroblast activation, we compared expression profiles of VICs cultured on poly(ethylene glycol) (PEG) gels to those cultured on tissue culture polystyrene (TCPS), as well as fresh isolates. In general, VICs cultured in hydrogel matrices had lower levels of activation (<10%), similar to levels seen in healthy valve tissue, while VICs cultured on TCPS were ∼75% activated myofibroblasts. VICs cultured on TCPS also exhibited a higher magnitude of perturbations in gene expression than soft hydrogel cultures when compared to the native phenotype. Using peptide-modified PEG gels, VICs were seeded on (2D), as well as encapsulated in (3D), matrices of the same composition and modulus. Despite similar levels of activation, VICs cultured in 2D had distinct variations in transcriptional profiles compared to those in 3D hydrogels. Genes related to cell structure and motility were particularly affected by the dimensionality of the culture platform, with higher expression levels in 2D than in 3D. These results indicate that dimensionality may play a significant role in dictating cell phenotype (e.g., through differences in polarity, diffusion of soluble signals), and emphasize the importance of using multiple metrics when characterizing cell phenotype.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
Dichloromethane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Dichloromethane, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Ethanol, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
2-Propanol, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC)
Sigma-Aldrich
Dichloromethane, puriss., meets analytical specification of Ph. Eur., NF, ≥99% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, Molecular Biology
Sigma-Aldrich
Dichloromethane, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dichloromethane, puriss. p.a., ACS reagent, reag. ISO, ≥99.9% (GC)
Sigma-Aldrich
Dichloromethane, biotech. grade, 99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
2-Propanol, SAJ first grade, ≥99.0%
Sigma-Aldrich
2-Propanol, JIS special grade, ≥99.5%
Sigma-Aldrich
Dichloromethane, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, ≥99.5%