Przejdź do zawartości
Merck

Comparison of modification sites in glycated crystallin in vitro and in vivo.

Analytical and bioanalytical chemistry (2015-02-01)
Martyna Kielmas, Monika Kijewska, Alicja Kluczyk, Jolanta Oficjalska, Bożena Gołębiewska, Piotr Stefanowicz, Zbigniew Szewczuk
ABSTRAKT

Glycation of α-crystallin is responsible for age- and diabetic-related cataracts, which are the main cause of blindness worldwide. We optimized the method of identification of lysine residues prone to glycation using the combination of LC-MS, isotopic labeling, and modified synthetic peptide standards with the glycated lysine derivative (Fmoc-Lys(i,i-Fru,Boc)-OH). The in vitro glycation of bovine lens α-crystallin was conducted by optimized method with the equimolar mixture of [(12)C6]- and [(13)C6]D-glucose. The in vivo glycation was studied on human lens crystallin. The glycated protein was subjected to proteolysis and analyzed using LC-MS. The results of in vitro and in vivo glycation of α-crystallin reveal a different distribution of the modified lysine residues. More Amadori products were detected as a result of the in vitro reaction due to forced glycation conditions. The developed method allowed us to identify the glycation sites in crystallin from eye lenses obtained from patients suffering from the cataract. We identified K166 in the A chain and K166 in the B chain of α-crystallin as major glycation sites during the in vitro reaction. We found also two in vivo glycated lysine residues: K92 in the B chain and K166 in the A chain, which are known as locations for Amadori products. These modification sites were confirmed by the LC-MS experiment using two synthetic standards. This study demonstrates the applicability of the LC-MS methods combined with the isotopic labeling and synthetic peptide standards for analysis of post-translational modifications in the biological material.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sucrose, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Sigma-Aldrich
Ammonium bicarbonate, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Triisopropylsilane, 98%
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
N-p-Tosyl-L-phenylalanine chloromethyl ketone, ≥97% (TLC), powder
Millipore
Sucrose, suitable for microbiology, ACS reagent, ≥99.0%
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Supelco
Dextrose, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Dichloromethane, Selectophore, ≥99.5%
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Supelco
Trifluoroacetic acid, analytical standard
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dextrose, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
Sucrose, Molecular Biology, ≥99.5% (GC)
Supelco
Dichloromethane, analytical standard
USP
Dekstroza, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%