Skip to Content
MilliporeSigma
  • Drug-induced changes to the vertebral endplate vasculature affect transport into the intervertebral disc in vivo.

Drug-induced changes to the vertebral endplate vasculature affect transport into the intervertebral disc in vivo.

Journal of orthopaedic research : official publication of the Orthopaedic Research Society (2014-09-05)
Sarah E Gullbrand, Joshua Peterson, Rosemarie Mastropolo, James P Lawrence, Luciana Lopes, Jeffrey Lotz, Eric H Ledet
ABSTRACT

Intervertebral disc health is mediated in part by nutrient diffusion from the microvasculature in the adjacent subchondral bone. Evidence suggests that a reduction in nutrient diffusion contributes to disc degeneration, but the role of the microvasculature is unclear. The purpose of this study was to induce changes in the endplate microvasculature in vivo via pharmaceutical intervention and then correlate microvasculature characteristics to diffusion and disc health. New Zealand white rabbits were administered either nimodipine (to enhance microvessel density) or nicotine (to diminish microvessel density) daily for 8 weeks compared to controls. Trans-endplate diffusion and disc health were quantified using post-contrast enhanced magnetic resonance imaging (MRI). Histology was utilized to assess changes to the subchondral vasculature. Results indicate that nimodipine increased vessel area and vessel-endplate contact length, causing a significant increase in disc diffusion. Surprisingly, nicotine caused increases in vessel number and area but did not alter diffusion into the disc. The drug treatments did affect the microvasculature and diffusion, but the relationship between the two is complex and dependent on multiple factors which include vessel-endplate distance, and vessel-endplate contact length in addition to vessel density. Our data suggest that drugs can modulate these factors to augment or diminish small molecule transport.

MATERIALS
Product Number
Brand
Product Description

Supelco
Nimodipine, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
S(−)-Nicotine solution, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
Nimodipine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, Molecular Biology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethanol, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Nimodipine
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, 36.5-38% in H2O
Supelco
(−)-Nicotine solution, 1.0 mg/mL, analytical standard, for drug analysis
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
(−)-Nicotine, ≥99% (GC), liquid
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C