Skip to Content
MilliporeSigma
  • The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

Journal of the American Society for Mass Spectrometry (2014-09-25)
Tiina J Kauppila, Hendrik Kersten, Thorsten Benter
ABSTRACT

A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Toluene, JIS 300, suitable for residue analysis, ≥99.8%
Sigma-Aldrich
Hexane, SAJ first grade, ≥95.0%
Sigma-Aldrich
Pyridine, JIS special grade, ≥99.5%
Sigma-Aldrich
Toluene, JIS 1000, suitable for residue analysis, ≥99.8%
Sigma-Aldrich
Hexane, JIS 300, ≥96.0%, suitable for residue analysis
Sigma-Aldrich
Hexane, ≥96.0%, suitable for residual phthalate analysis
Sigma-Aldrich
Hexane, JIS special grade, ≥96.0%
Sigma-Aldrich
Toluene, JIS special grade, ≥99.5%
Sigma-Aldrich
Pyridine, suitable for hydroxyl value determination, ≥99.5%
Sigma-Aldrich
Hexane, suitable for residue analysis, JIS 5000
Sigma-Aldrich
Hexane, suitable for HPLC
Sigma-Aldrich
Hexane, JIS 1000, ≥96.0%, suitable for residue analysis
Sigma-Aldrich
Toluene, SAJ first grade, ≥99.0%
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Toluene-d8, anhydrous, 99.6 atom % D
Sigma-Aldrich
Acridine, ≥96.5% (HPLC)
Sigma-Aldrich
Pyridine, anhydrous, 99.8%
Sigma-Aldrich
Toluene-d8, "100%", 99.96 atom % D
Sigma-Aldrich
Ethylbenzene, anhydrous, 99.8%
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
Toluene-d8, 99 atom % D
Sigma-Aldrich
Hexane, anhydrous, 95%
Supelco
Toluene, HPLC grade, 99.8%
Sigma-Aldrich
Quinoline, reagent grade, 98%
Sigma-Aldrich
Toluene-d8, 99.6 atom % D
Sigma-Aldrich
Anisole, ≥99%, FCC, FG
Supelco
Anisole, analytical standard
Supelco
Pyridine, analytical standard
Sigma-Aldrich
Acridine, BioReagent, suitable for fluorescence, ≥97.0% (HPLC)
Sigma-Aldrich
Anisole, anhydrous, 99.7%