Skip to Content
MilliporeSigma
  • Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume.

Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume.

PloS one (2015-07-18)
Tsiry Rasamiravaka, Olivier M Vandeputte, Laurent Pottier, Joelle Huet, Christian Rabemanantsoa, Martin Kiendrebeogo, Abel Andriantsimahavandy, Andry Rasamindrakotroka, Caroline Stévigny, Pierre Duez, Mondher El Jaziri
ABSTRACT

Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1 biofilm and its maintenance as well as the expression of the las and rhl QS systems. Consequently, the production of QS-controlled virulence factors including, rhamnolipids, pyocyanin, elastase and extracellular polysaccharides as well as twitching and swarming motilities is reduced. Native acylhomoserine lactones (AHLs) production is inhibited by OALC but exogenous supply of AHLs does not restore the production of virulence factors by OALC-treated cultures, indicating that OALC exerts its effect beyond AHLs synthesis in the QS pathways. Further experiments provided a significant inhibition of the global virulence factor activator gacA by OALC. OALC disorganizes established biofilm structure and improves the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Finally, a significant reduction of Caenorhabditis elegans paralysis was recorded when the worms were infected with OALC-pre-treated P. aeruginosa. Taken together, these results show that triterpenoid coumarate esters are suitable chemical backbones to target P. aeruginosa virulence mechanisms.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hexane, JIS special grade, ≥96.0%
Sigma-Aldrich
Hexane, JIS 300, ≥96.0%, suitable for residue analysis
Sigma-Aldrich
Hexane, ≥96.0%, suitable for residual phthalate analysis
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for HPLC
Sigma-Aldrich
Phenol, SAJ first grade, ≥98.0%
Sigma-Aldrich
Phenol, ≥99.0%
Sigma-Aldrich
Acetonitrile, JIS special grade, ≥99.5%
Sigma-Aldrich
Ethyl acetate, JIS 300, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Phenol, ≥99.0%
Sigma-Aldrich
Hexane, JIS 1000, ≥96.0%, suitable for residue analysis
Sigma-Aldrich
Ethyl acetate, JIS special grade, ≥99.5%
Sigma-Aldrich
Hexane, SAJ first grade, ≥95.0%
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for residue analysis, JIS 300
Sigma-Aldrich
Ethyl acetate, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethyl acetate, JIS 1000, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for residue analysis, JIS 1000
Sigma-Aldrich
Acetonitrile, SAJ first grade, ≥99.0%
Sigma-Aldrich
Phenol, JIS special grade, ≥99.0%
Sigma-Aldrich
Methylene Blue solution
Sigma-Aldrich
Hexane, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrile, suitable for chromatography
Sigma-Aldrich
Ethyl acetate, suitable for HPLC
Sigma-Aldrich
Hexane, suitable for HPLC
Sigma-Aldrich
Phenol, ACS reagent, ≥99.0%
Sigma-Aldrich
Ethyl acetate, anhydrous, 99.8%
Sigma-Aldrich
Phenol, ≥99%
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
N-(3-Oxododecanoyl)-L-homoserine lactone, quorum sensing signaling molecule