• Home
  • Search Results
  • Formation of reactive impurities in aqueous and neat polyethylene glycol 400 and effects of antioxidants and oxidation inducers.

Formation of reactive impurities in aqueous and neat polyethylene glycol 400 and effects of antioxidants and oxidation inducers.

Journal of pharmaceutical sciences (2012-05-23)
Jeffrey N Hemenway, Thiago C Carvalho, Venkatramana M Rao, Yongmei Wu, Jaquan K Levons, Ajit S Narang, Srinivasa R Paruchuri, Howard J Stamato, Sailesh A Varia
ABSTRACT

A 2,4-dinitrophenylhydrazine (DNPH) precolumn derivatization high-performance liquid chromatography-ultraviolet detection (HPLC-UV) method was developed to quantify levels of formaldehyde and acetaldehyde in polyethylene glycol (PEG) solutions. Formic acid and acetic acid were quantified by HPLC-UV. Samples of neat and aqueous PEG 400 solutions were monitored at 40°C and 50°C to determine effects of excipient source, water content, pH, and trace levels of hydrogen peroxide or iron metal on the formation of reactive impurities. The effects of antioxidants were also evaluated. Formic acid was the major degradation product in nearly all cases. The presence of water increased the rate of formation of all impurities, especially formic acid as did the presence of hydrogen peroxide and trace metals. Acidic pH increased the formation of acetaldehyde and acetic acid. A distribution of unidentified degradation products formed in neat PEG 400 disappeared upon addition of HCl with corresponding increase of formic acid, indicating they were likely to be PEG-formyl esters. Other unidentified degradation products reacted with DNPH to form a distribution of derivatized products likely to be PEG aldehydes. Antioxidants butylated hydroxyanisole, butylated hydroxytoluene, propyl gallate d-alpha tocopheryl polyethylene glycol-1000 succinate, and sodium metabisulfite were effective in limiting reactive impurity formation, whereas ascorbic acid and acetic acid were not.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium metabisulfite, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium metabisulfite, puriss. p.a., ACS reagent, reag. Ph. Eur., dry, 98-100.5%
Sigma-Aldrich
Sodium metabisulfite, reagent grade, 97%
Sigma-Aldrich
Sodium metabisulfite, puriss., meets analytical specification of Ph. Eur., BP, NF, FCC, E223, dry, 97-100.5%
Supelco
Sodium metabisulfite, analytical standard
Sigma-Aldrich
Sodium metabisulfite, tested according to Ph. Eur.
Sigma-Aldrich
Sodium metabisulfite, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.