Chitosan-based siRNA delivery systems.

Journal of controlled release : official journal of the Controlled Release Society (2013-08-24)
Héloïse Ragelle, Gaëlle Vandermeulen, Véronique Préat

Recently, chitosan has attracted significant attention in the formulation of small interfering RNA (siRNA). Because of its cationic nature, chitosan can easily complex siRNA, thus readily forming nanoparticles. Moreover, chitosan is biocompatible and biodegradable, which make it a good candidate for siRNA delivery in vivo. However, chitosan requires further development to achieve high efficiency. This review will describe the major barriers that impair the efficiency of the chitosan-based siRNA delivery systems, including the stability of the delivery system in biological fluids and endosomal escape. Several solutions to counteract these barriers have been developed and will be discussed. The parameters to consider for designing powerful delivery systems will be described, particularly the possibilities for grafting targeting ligands. Finally, optimized systems that allow in vivo therapeutic applications for both local and systemic delivery will be reviewed. This review will present recent improvements in chitosan-based siRNA delivery systems that overcome many of these system's previous pitfalls and pave the way to a new generation of siRNA delivery systems.

Product Number
Product Description

Chitosan, low molecular weight
Chitosan, medium molecular weight
Chitosan, high molecular weight
Chitosan, from shrimp shells, ≥75% (deacetylated)
Chitosan, from shrimp shells, practical grade
Chitosan from shrimp shells, low-viscousity

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.