• Home
  • Search Results
  • Characterisation of skin barrier function using bioengineering and biophysical techniques.

Characterisation of skin barrier function using bioengineering and biophysical techniques.

Pharmaceutical research (2014-08-06)
Quan Yang, Richard H Guy
ABSTRACT

To characterise skin barrier function in vivo at two distinct anatomic sites using minimally invasive bioengineering and biophysical tools. In healthy human volunteers, the quantities of stratum corneum (SC) per unit area of skin on the forearm and forehead were quantified by gravimetric and imaging techniques. Organisation of the SC intercellular lipids was evaluated as a function of position using attenuated total reflectance infrared spectroscopy (ATR-IR). The constituents of natural moisturising factor (NMF) were extracted from tape-stripped samples of the SC and by reverse iontophoresis; 21 components were identified and quantified by liquid chromatography with mass spectrometric detection. SC was quantified more accurately by imaging and was significantly thinner on the forehead than on the forearm. Intercellular lipids were more disordered near the skin surface at both sites; however, throughout forearm SC, the lipids were substantially better organised than those in the forehead. Compositionally, the NMF from forearm and forehead SC was similar, but the total amount extractable from the forehead was smaller. Taken together, the bioengineering and biophysical techniques employed demonstrate, in a complementary, objective and quantitative fashion, that SC barrier function on the forehead is less competent than that on the forearm.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Sodium azide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Sodium azide, BioXtra
Sigma-Aldrich
Sodium azide, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Perfluoropentanoic acid, 97%
Sigma-Aldrich
Sodium azide, purum p.a., ≥99.0% (T)
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Glycine-d5, 98 atom % D
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.5% (GC)
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 0.1 % (v/v) formic acid, 5 % (v/v) water, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.035 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile
Sigma-Aldrich
Acetonitrile solution, NMR reference standard, 0.23 wt. % in D2O (99.9 atom % D), water 0.05 wt. %, NMR tube size 6.5 mm × 8 in.

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.