A High-Yield, Chemoselective, and Mild Synthetic Method

Azides react readily with triarylphosphines to form the corresponding iminophophoranes (aza-ylides) with loss of nitrogen. This transformation, originally reported by Staudinger and Meyer,1 takes place under mild conditions and leads to excellent yields of the aza-ylide products. The initially formed iminophosphorane product can undergo a number of synthetically important reactions with a variety of electrophiles, such as aldehydes and ketones. However, in aqueous medium, it is hydrolyzed to the amine product.2,3 The overall reduction of the azide to the amine is believed to take place as shown in Scheme 1.4


Scheme 1.

When an ester group is situated ortho to the phosphorus, a covalent amide bond can be generated prior to hydrolysis (Scheme 2),4 which allows this transformation to have useful applications in chemical biology.

covalent amide bond

Scheme 2.

The reaction’s high chemoselectivity and the fact that the azide and the phosphine are chemically orthogonal to most functional groups found in biological systems have given rise to a strong renewed interest in the reaction as part of a methodology to investigate cellular processes in chemical biology.3 This is perhaps best exemplified by the studies of Professor Carolyn Bertozzi of the University of California, Berkeley. Bertozzi’s research employs appropriately substituted triphenylphosphines, as reducing and tagging agents, and a sequence of reactions to produce amide-linked, unnatural, cell-surface sialosides. Metabolically generated sialosides allow the modulation of viral infection and interfere with cancer cell metastasis. Bertozzi’s approach is illustrated in Scheme 3.5

Bertozzi’s approach

Scheme 3.

We offer many of the labeling and staining reagents commonly used in chemical biology research today, including the 1-methyl 4-pentafluorophenyl diester of 2-(diphenyl-phosphino)terephthalic acid (679011) and fluorescein 5-isothiocyanate (FITC, F2502). In addition, it also offers stable aza-ylides, such as N-(triphenylphosphoranylidene)aniline (324876).

labeling and staining reagents
labeling and staining reagents
labeling and staining reagents


Staudinger H, Meyer J. 1919, 2, 635. Helv. Chim. Acta . [Internet].
Mundy BP, Ellerd MG, Favaloro FGJ. 2005; p 614. (3) . Name Reactions and Reagents in Organic Synthesis, 2nd ed. [Internet]. Hoboken, NJ: Wiley .
Köhn M, Breinbauer R. 2004, 43, 3106 and references therein.. Angew. Chem., Int. Ed. . [Internet].
Saxon E, Luchansky SJ, Hang HC, Yu C, Lee SC, Bertozzi CR. 2002, 124, 14893 and references therein. For related information, see: (a) Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13. (b) Chandra, R. A.; Douglas, E. S.; Mathies, R. A.; Bertozzi, C. R.; Francis, M. B. Angew. Chem., Int. Ed. 2006, 45, 896.. J. Am. Chem.. [Internet].

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.