Przejdź do zawartości
Merck
  • An in vitro bone tissue regeneration strategy combining chondrogenic and vascular priming enhances the mineralization potential of mesenchymal stem cells in vitro while also allowing for vessel formation.

An in vitro bone tissue regeneration strategy combining chondrogenic and vascular priming enhances the mineralization potential of mesenchymal stem cells in vitro while also allowing for vessel formation.

Tissue engineering. Part A (2015-01-16)
Fiona E Freeman, Matthew G Haugh, Laoise M McNamara
ABSTRAKT

Chondrogenic priming (CP) of mesenchymal stem cells (MSCs) and coculture of MSCs with human umbilical vein endothelial stem cells (HUVECs) both have been shown to significantly increase the potential for MSCs to undergo osteogenic differentiation and mineralization in vitro and in vivo. Such strategies mimic cartilage template formation or vascularization that occur during endochondral ossification during early fetal development. However, although both chondrogenesis and vascularization are crucial precursors for bone formation by endochondral ossification, no in vitro bone tissue regeneration strategy has sought to incorporate both events simultaneously. The objective of this study is to develop an in vitro bone regeneration strategy that mimics critical aspects of the endochondral ossification process, specifically (1) the formation of a cartilage template and (2) subsequent vascularization of this template. We initially prime the MSCs with chondrogenic growth factors, to ensure the production of a cartilage template, and subsequently implement a coculture strategy involving MSC and HUVECs. Three experimental groups were compared; (1) CP for 21 days with no addition of cells; (2) CP for 21 days followed by coculture of HUVECs (250,000 cells); (3) CP for 21 days followed by coculture of HUVECs and MSCs (250,000 cells) at a ratio of 1:1. Each group was cultured for a further 21 days in osteogenic media after the initial CP period. Biochemical (DNA, Alkaline Phosphatase Activity, Calcium, and Vessel Endothelial Growth Factor) and histological analyses (Alcian blue, alizarin red, CD31(+), and collagen type X) were performed 1, 2, and 3 weeks after the media switch. The results of this study show that CP provides a cartilage-like template that provides a suitable platform for HUVEC and MSC cells to attach, proliferate, and infiltrate for up to 3 weeks. More importantly we show that the use of the coculture methodology, rudimentary vessels are formed within this cartilage template and enhanced the mineralization potential of MSCs. Taken together these results indicate for the first time that the application of both chondrogenic and vascular priming of MSCs enhances the mineralization potential of MSCs in vitro while also allowing the formation of immature vessels.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
L-Cysteine, Wacker Chemie AG, ≥98.0%
Supelco
Dexamethasone, Pharmaceutical Secondary Standard; Certified Reference Material
Dexamethasone for system suitability, European Pharmacopoeia (EP) Reference Standard
USP
Dexamethasone, United States Pharmacopeia (USP) Reference Standard
USP
Alkohol metylowy, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
L-Cysteine, 97%
USP
Kwas askorbinowy, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
p-Nitrophenyl Phosphate Liquid Substrate System, liquid
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Cysteine, from non-animal source, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Sigma-Aldrich
α-Linoleic acid, ≥98%
Sigma-Aldrich
L-Cysteine, ≥97%, FG
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.
Sigma-Aldrich
L-Cysteine, BioUltra, ≥98.5% (RT)
Sigma-Aldrich
Sodium phosphate, 96%
SAFC
L-Glutamine
SAFC
L-Cysteine
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Dexamethasone, British Pharmacopoeia (BP) Assay Standard
Dexamethasone, European Pharmacopoeia (EP) Reference Standard