Przejdź do zawartości
Merck

Azure B and a synthetic structural analogue of methylene blue, ethylthioninium chloride, present with antidepressant-like properties.

Life sciences (2014-12-03)
Anzelle Delport, Brian H Harvey, Anél Petzer, Jacobus P Petzer
ABSTRAKT

The phenothiazinium compound, methylene blue (MB), possesses diverse pharmacological actions and is attracting attention for the treatment of bipolar disorder and Alzheimer's disease. MB acts on both monoamine oxidase (MAO) and the nitric oxide (NO)-cGMP pathway, and possesses antidepressant activity in rodents. The goal of this study was to synthesise a structural analogue of MB, ethylthioninium chloride (ETC), and to evaluate the effects of the structural changes on the MAO inhibitory and antidepressant properties of MB. This study also investigated the antidepressant properties of azure B, the major metabolite of MB, versus MB and imipramine as active comparators. ETC and azure B were firstly evaluated as inhibitors of human MAO, and secondly for antidepressant-like activity in the acute forced swim test (FST) in rats, and compared to saline, imipramine and MB. The results document that ETC is a reversible inhibitor of MAO-A and MAO-B with IC50 values of 0.510 μM and 0.592 μM, respectively, and that it is a weaker MAO-A inhibitor than MB and azure B. ETC and azure B were more effective than imipramine and MB in reversing immobility in the FST without inducing locomotor effects, with evidence supporting a serotonergic action. Of interest is the finding that ETC is more toxic for cultured cells than MB. Azure B may therefore be a contributor to the antidepressant effect of MB. Small structural changes made to MB retain its antidepressant effect, even though the resulting phenothiazinium compound possesses reduced MAO-A inhibitory potency.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Kynuramine dihydrobromide, crystalline
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Imipramine for system suitability, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Pargyline hydrochloride
Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%, poly coated bottles
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.4-100.6%, powder
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), derivatization grade (GC derivatization), LiChropur
Supelco
Hydrogen chloride – ethanol, ~1.25 M HCl, derivatization grade (GC derivatization), LiChropur
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
Azure B, prepared by direct synthesis