Przejdź do zawartości
Merck

In vivo performance and biocompatibility of a subcutaneous implant for real-time glucose-responsive insulin delivery.

Diabetes technology & therapeutics (2015-02-12)
Michael K L Chu, Claudia R Gordijo, Jason Li, Azhar Z Abbasi, Adria Giacca, Oliver Plettenburg, Xiao Yu Wu
ABSTRAKT

An implantable, glucose-responsive insulin delivery microdevice was reported previously by our group, providing rapid insulin release in response to hyperglycemic events and efficacy in vivo over a 1-week period when implanted intraperitoneally in rats with diabetes. Herein, we focused on the improvement of the microdevice prototype for long-term glycemic control by subcutaneous (SC) implantation, which allows for easy retrieval and replacement as needed. To surmount the strong immune response to the SC implant system, the microdevice was treated by surface modification with high-molecular-weight polyethylene glycol (PEG). In vitro glucose-responsive insulin release, in vivo efficacy, and biocompatibility of the microdevice were studied. Modification with 20-kDa PEG chains greatly reduced the immune response without a significant change in glucose-responsive insulin release in vitro. The fibrous capsule thickness was reduced from approximately 1,000 μm for the untreated devices to 30-300 μm for 2-kDa PEG-treated and to 30-50 μm for 20-kDa PEG-treated devices after 30 days of implantation. The integrity of the glucose-responsive bioinorganic membrane and the resistance to acute and chronic immune response were improved with the long-chain 20-kDa PEG brush layer. The 20-kDa PEG-treated microdevice provided long-term maintenance of euglycemia in a rat model of diabetes for up to 18 days. Moreover, a consistent rapid response to short-term glucose challenge was demonstrated in multiple-day tests for the first time on rats with diabetes in which the devices were implanted. The improvement of the microdevice is a promising step toward a long-acting insulin implant system for a true, closed-loop treatment of diabetes.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Dextrose, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%, poly coated bottles
Sigma-Aldrich
(3-Aminopropyl)trimethoxysilane, 97%
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
Dimethyl ether, puriss., ≥99.9% (GC)
Sigma-Aldrich
Dimethyl ether, puriss., ≥99.9% (GC)
Sigma-Aldrich
Tripentylamine, 98%, mixture of isomers
Sigma-Aldrich
Dimethyl ether, ≥99.9%
Supelco
Dextrose, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Dekstroza, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard
USP
Alkohol metylowy, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Glutaraldehyde solution, technical, ~50% in H2O (5.6 M)
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.