Przejdź do zawartości
Merck

Lung matrix and vascular remodeling in mechanically ventilated elastin haploinsufficient newborn mice.

American journal of physiology. Lung cellular and molecular physiology (2014-12-30)
Anne Hilgendorff, Kakoli Parai, Robert Ertsey, Edwin Navarro, Noopur Jain, Francis Carandang, Joanna Peterson, Lucia Mokres, Carlos Milla, Stefanie Preuss, Miguel Alejandre Alcazar, Suleman Khan, Juliet Masumi, Nancy Ferreira-Tojais, Sana Mujahid, Barry Starcher, Marlene Rabinovitch, Richard Bland
ABSTRAKT

Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln(+/-)) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln(+/+)) and Eln(+/-) littermates at baseline and after MV with air for 8-24 h. Lungs of unventilated Eln(+/-) mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln(+/+) pups. Eln(+/-) lungs contained fewer capillaries than Eln(+/+) lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln(+/+) neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln(+/-) mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln(+/-) than in Eln(+/+) pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln(+/-) compared with Eln(+/+) mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln(+/+) and Eln(+/-) mice. Paucity of lung capillaries in Eln(+/-) newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln(+/-) mice.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Monoclonal Anti-Actin, α-Smooth Muscle, clone 1A4, ascites fluid
Sigma-Aldrich
Hematoxylin, certified by the BSC
Sigma-Aldrich
Hematoxylin
Sigma-Aldrich
DL-Serine, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥98% (HPLC)
Sigma-Aldrich
DL-Serine, ≥98% (TLC)
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Hydrogen peroxide solution, tested according to Ph. Eur.
Supelco
Hydrogen peroxide solution, ≥30%, for trace analysis
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Xylazine, ≥99%
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Supelco
Hydrogen peroxide solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Hydrogen peroxide solution, 50 wt. % in H2O, stabilized
Serine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, 36.5-38% in H2O
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, BioReagent, ≥36.0% in H2O (T)
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O