Przejdź do zawartości
Merck

Role of rumen butyrate in regulation of nitrogen utilization and urea nitrogen kinetics in growing sheep.

Journal of animal science (2015-05-29)
U Agarwal, Q Hu, R L Baldwin, B J Bequette
ABSTRAKT

Butyrate, a major rumen VFA, has been indirectly linked to enhancement of urea recycling on the basis of increased expression of urea transporter in the rumen epithelia of steers fed a rumen butyrate-enhancing diet. Two studies were conducted to quantify the effect of elevated rumen butyrate concentrations on N balance, urea kinetics and rumen epithelial proliferation. Wether sheep (n= 4), fitted with a rumen cannula, were fed a pelleted ration (∼165 g CP/kg DM, 10.3 MJ ME/kg DM) at 1.8 × ME requirement. In Exp. 1, sheep were infused intraruminally with either an electrolyte buffer solution (Con-Buf) or butyrate dissolved in the buffer solution (But-Buf) during 8-d periods in a balanced crossover design. In Exp. 2, sheep were infused intraruminally with either sodium acetate (Na-Ac) or sodium butyrate (Na-But) for 9 d. All solutions were adjusted to pH 6.8 and 8.0 in Exp. 1 and 2, respectively, and VFA were infused at 10% of ME intake. [15N2] urea was continuously infused intravenously for the last 5 d of each period, and total urine and feces were collected. In Exp. 1, 2H5-phenylalanine was continuously infused intravenously over the last 12 h, after which a biopsy from the rumen papillae was taken for measurement of fractional protein synthesis rate (FSR). Butyrate infusion treatments increased (P = 0.1 in Exp. 1; P < 0.05 in Exp. 2) the proportion of rumen butyrate, and acetate infusion increased (P < 0.05) rumen acetate. All animals were in positive N balance (4.2 g N/d in Exp. 1; 7.0 g N/d in Exp. 2), but no difference in N retention was observed between treatments. In Exp. 2, urea entry (synthesis) rate was reduced ( < 0.05) by Na-But compared with the Na-Ac control. In Exp. 1, although But-Buf infusion increased the FSR of rumen papillae (35.3% ± 1.08%/d vs. 28.7% ± 1.08%/d; P < 0.05), urea kinetics were not altered by But-Buf compared with Con-Buf. These studies are the first to directly assess the role of butyrate in urea recycling and its effects on rumen papillae protein turnover in growing lambs. Under the feeding conditions used and the rate of continuous butyrate infusion into the rumen in the present studies, butyrate does not affect overall N retention in growing sheep. However, butyrate may play a role in the redistribution of urea N fluxes in the overall scheme of N metabolism.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
N-tert-Butyldimethylsilyl-N-methyltrifluoroacetamide with 1% tert-Butyldimethylchlorosilane, ≥95%
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Urea, BioUltra, Molecular Biology, 99% (T)
Sigma-Aldrich
Urea, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99%
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, powder, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Urea, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis