Skip to Content
MilliporeSigma
  • Capillary liquid chromatography combined with pressurized liquid extraction and dispersive liquid-liquid microextraction for the determination of vitamin E in cosmetic products.

Capillary liquid chromatography combined with pressurized liquid extraction and dispersive liquid-liquid microextraction for the determination of vitamin E in cosmetic products.

Journal of pharmaceutical and biomedical analysis (2014-03-08)
Pilar Viñas, Marta Pastor-Belda, Natalia Campillo, María Bravo-Bravo, Manuel Hernández-Córdoba
ABSTRACT

Capillary liquid chromatography (LC) is used for the determination of tocopherols and tocotrienols in cosmetic products. Dispersive liquid-liquid microextraction (DLLME) allows the analytes to be preconcentrated into a very small volume of organic solvent which is then injected into the chromatograph running at a very low flow rate. Pressurized liquid extraction (PLE) at a high temperature and pressure was used to isolate vitamin E forms from cosmetics. The Taguchi experimental method was used to optimize the factors affecting DLLME. The parameters selected were 2mL of acetonitrile (disperser solvent), 100μL carbon tetrachloride (extraction solvent) and 10mL aqueous solution. A volume of 5μL of the organic phase was injected into the reversed-phase capillary LC system equipped with a diode array detector and using an isocratic mobile phase composed of an 95:5 (v/v) methanol:water mixture at a flow-rate of 20μLmin(-1). Quantification was carried out using aqueous standards and detection limits were in the range 0.1-0.5ngmL(-1), corresponding to 3-15ngg(-1) in the cosmetic sample. The recoveries were in the 87-105% range, with RSDs lower than 7.8%. The method was validated according to international guidelines and using a certified reference material.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium hydroxide solution, 0.1 M in ethanol
Sigma-Aldrich
Potassium hydroxide solution, 0.1 M in isopropanol
Sigma-Aldrich
Potassium hydroxide solution, 0.5 M
Sigma-Aldrich
Potassium hydroxide solution, 0.1 M
Sigma-Aldrich
Potassium hydroxide solution, 0.5 M in ethanol
Sigma-Aldrich
Potassium hydroxide solution, 0.02 M in ethanol
Sigma-Aldrich
Potassium hydroxide solution, 1 M
Sigma-Aldrich
Methanol solution, suitable for NMR (reference standard), 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Potassium hydroxide solution, 45 wt. % in H2O
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Supelco
Potassium hydroxide solution, volumetric, 8.0 M KOH (8.0N)
Sigma-Aldrich
Potassium hydroxide, ≥99.95% trace metals basis
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for residue analysis, JIS 1000
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for HPLC
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, suitable for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Acetonitrile, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetonitrile, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Acetonitrile, suitable for chromatography
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Acetonitrile, suitable for residue analysis, JIS 5000
Supelco
Acetonitrile, analytical standard